A quantum set is defined to be simply a set of nonzero finite-dimensional Hilbert spaces. Together with binary relations, essentially the quantum relations of Weaver, quantum sets form a dagger compact category. Functions between quantum sets are certain binary relations that can be characterized in terms of this dagger compact structure, and the resulting category of quantum sets and functions generalizes the category of ordinary sets and functions in the manner of noncommutative mathematics. In particular, this category is dual to a subcategory of von Neumann algebras. The basic properties of quantum sets are presented thoroughly, with the noncommutative dictionary in mind, and with an eye to convenient application. As a motivating example, a notion of quantum graph coloring is derived within this framework, and it is shown to be equivalent to the notion that appears in the quantum information theory literature.

1.
S.
Abramsky
,
R. S.
Barbosa
,
N.
de Silva
, and
O.
Zapata
, “
The quantum monad on relational structures
,” in
Proceedings of the MFCS 2017
,
2017
.
2.
S.
Abramsky
and
B.
Coecke
, “
Categorical quantum mechanics
,” e-print arXiv:0808.1023 (
2008
).
3.
B.
Blackadar
, “
Operator algebras: Theory of C*-algebras and von Neumann algebras
,” available at https://wolfweb.unr.edu/homepage/bruceb/ (
2017
).
4.
G.
Brassard
,
A.
Broadbent
, and
A.
Tapp
, “
Quantum pseudo-telepathy
,”
Found. Phys.
35
(
4
),
1877
(
2005
).
5.
G.
Brassard
,
R.
Cleve
, and
A.
Tapp
, “
Cost of exactly simulating quantum entanglement with classical communication
,”
Phys. Rev. Lett.
83
(
9
),
1874
(
1999
).
6.
P. J.
Cameron
,
A.
Montanaro
,
M. W.
Newman
,
S.
Severini
, and
A.
Winter
, “
On the quantum chromatic number of a graph
,”
Electron. J. Combin.
14
(
1
),
R81
(
2007
).
7.
K.
Cho
,
B.
Jacobs
,
B.
Westerbaan
, and
A.
Westerbaan
, “
An introduction to effectus theory
,” e-print arXiv:1512.05813 (
2015
).
8.
K.
Cho
and
A.
Westerbaan
, “
Von Neumann algebras form a model for the quantum lambda calculus
,” e-print arXiv:1603.02113 (
2016
).
9.
R.
Cleve
,
P.
Høyer
,
B.
Toner
, and
J.
Watrous
, “
Consequences and limits of nonlocal strategies
,” in
Proceedings of the 19th IEEE Annual Conference on Computational Complexity
(
IEEE
,
2004
).
10.
C.
Davis
, “
Generators of the ring of bounded operators
,”
Proc. Am. Math. Soc.
6
,
970
(
1955
).
11.
K.
De Commer
,
P.
Kasprzak
,
A.
Skalski
, and
P.
Sołtan
, “
Quantum actions on discrete quantum spaces and a generalization of Clifford’s theory of representations
,”
Israel J. Math.
226
(
1
),
475
(
2018
).
12.
E.
Effros
and
Z.-J.
Ruan
, “
Discrete quantum groups. I. The Haar measure
,”
Int. J. Math.
5
,
681
(
1994
).
13.
D. H.
Fremlin
,
Measure Theory
, 2nd ed. (
Lulu
,
2012
), Vol. 3, Part I, https://www.lulu.com.
14.
V.
Galliard
,
A.
Tapp
, and
S.
Wolf
, “
The impossibility of pseudo-telepathy without quantum entanglement
,” in
Proceedings of the ISIT 2003
,
2003
.
15.
V.
Galliard
and
S.
Wolf
, “
Pseudo-telepathy, entanglement, and graph colorings
,” in
Proceedings of the ISIT 2002
,
2002
.
16.
J. M.
Garcia-Bondia
,
J. C.
Varilly
, and
H.
Figueroa
,
Elements of Noncommutative Geometry
(
Birkaüser
,
2000
).
17.
R.
Giles
and
H.
Kummer
, “
A noncommutative generalization of topology
,”
Indiana Univ. Math. J.
21
(
1
),
91
(
1971
).
18.
A.
Guichardet
, “
Sur la catégorie des algèbres de Von Neumann
,”
Bull. Sci. Math.
90
,
41
(
1966
).
19.
P.
Heywood
and
M. L. G.
Redhead
, “
Nonlocality and the Kochen-Specker paradox
,”
Found. Phys.
13
(
5
),
481
(
1983
).
20.
S.
Kochen
and
E.
Specker
, “
The problem of hidden variables in quantum mechanics
,”
J. Math. Mech.
17
(
1
),
59
(
1967
).
21.
A.
Kornell
, “
Quantum functions
,” e-print arXiv:1101.1694 (
2011
).
22.
A.
Kornell
, “
Quantum collections
,”
Int. J. Math.
28
(
12
),
1750085
(
2017
).
23.
G.
Kuperberg
and
N.
Weaver
, “
A von Neumann algebra approach to quantum metrics
,”
Mem. Am. Math. Soc.
215
,
1
(
2012
).
24.
J.
Kustermans
and
S.
Vaes
, “
Locally compact quantum groups
,”
Ann. Sci. l’École Norm. Supér.
33
(
6
),
837
(
2000
).
25.
F. W.
Lawvere
, “
An elementary theory of the category of sets
,”
Proc. Natl. Acad. Sci. U. S. A.
52
(
6
),
1506
(
1964
).
26.
L.
Mančinska
and
D. E.
Roberson
, “
Quantum homomorphisms
,”
J. Combin. Theory Ser. B
118
,
228
(
2016
).
27.
B.
Musto
,
D. J.
Reutter
, and
D.
Verdon
, “
A compositional approach to quantum functions
,”
J. Math. Phys.
59
,
081706
(
2018
).
28.
B.
Musto
,
D. J.
Reutter
, and
D.
Verdon
, “
The Morita theory of quantum graph isomorphisms
,”
Commun. Math. Phys.
365
(
2
),
797
(
2019
).
29.
M.
Ozawa
, “
Transfer principle in quantum set theory
,”
J. Symb. Log.
72
(
2
),
625
(
2007
).
30.
P.
Podleś
and
S. L.
Woronowicz
, “
Quantum deformation of Lorentz group
,”
Commun. Math. Phys.
130
(
2
),
381
(
1990
).
31.
K.-G.
Schlesinger
, “
Toward quantum mathematics. I. From quantum set theory to universal quantum mechanics
,”
J. Math. Phys.
40
,
1344
(
1999
).
32.
K. B.
Sinha
and
D.
Goswami
,
Quantum Stochastic Processes and Noncommutative Geometry
, Cambridge Tracts in Mathematics (
Cambridge University Press
,
2007
), Vol. 169.
33.
P.
Sołtan
, “
Quantum families of maps and quantum semigroups on finite quantum spaces
,”
J. Geom. Phys.
59
,
354
(
2009
).
34.
G.
Takeuti
,
Quantum Set Theory
, Current Issues in Quantum Logic (
Plenum
,
1981
), pp.
303
322
.
35.
A.
Van Daele
, “
Discrete quantum groups
,”
J. Algebra
180
,
431
(
1996
).
36.
J.
Vicary
, “
Categorical formulation of finite-dimensional C*-algebra
,”
Commun. Math. Phys
304
,
765
(
2011
).
37.
N.
Weaver
, “
Quantum relations
,”
Mem. Am. Math. Soc.
215
,
81
(
2012
).
38.
N.
Weaver
,
Mathematical Quantization
, Studies in Advanced Mathematics (
Chapman & Hall/CRC
,
2001
).
39.
R.
Duncan
and
C.
Heunen
,
Proceedings 13th International Conference on Quantum Physics and Logic (QPL 2016), Glasgow, Scotland, 6-10 June 2016, Electronic Proceedingsin Theoretical Computer Science 236
, pp.
215
228
.
40.
A.
Westerbaan
, “
The category of von Neumann algebras
,” Ph.D. thesis,
GVO drukkers & vormgevers B.V.
,
2019
.
You do not currently have access to this content.