This paper is focused on the generalized Forchheimer flows for slightly compressible fluids, described as a system of two nonlinear degenerating partial differential equations of first order. We prove the existence and uniqueness of the Dirichlet problem for the stationary case. The technique of semidiscretization in time is used to prove the existence for the time-dependent case.
REFERENCES
1.
Y.
Amirat
, “Écoulements en milieu poreux n’obéssant pas à la loi de Darcy
,” ESAIM: Math. Modell. Numer. Anal.
25
, 273
–306
(1991
).2.
E.
Aulisa
, L.
Bloshanskaya
, L.
Hoang
, and A.
Ibragimov
, “Analysis of generalized Forchheimer flows of compressible fluids in porous media
,” J. Math. Phys.
50
, 103102
(2009
).3.
E.
Aulisa
, A.
Ibragimov
, and J.
Walton
, “A new method for evaluating the productivity index of nonlinear flows
,” Soc. Pet. Eng.
14
, 693
–706
(2009
).4.
5.
H.
Brézis
, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert
, North-Holland Mathematics Studies No. 5 (North-Holland Publishing
, Amsterdam
, 1973
). Notas de Matemática (50).6.
F.
Brezzi
and M.
Fortin
, Mixed and Hybrid Finite Element Methods
, Springer Series in Computational Mathematics Vol. 15 (Springer-Verlag
, New York
, 1991
).7.
F.
Brezzi
and M.
Fortin
, Mixed and Hybrid Finite Element Methods
, Springer Series in Computational Mathematics (Springer
New York
, 2012
).8.
E.
Celik
, L.
Hoang
, A.
Ibragimov
, and T.
Kieu
, “Fluid flows of mixed regimes in porous media
,” J. Math. Phys.
58
, 023102
(2017
).9.
J. J.
Douglas
, P. J.
Paes-Leme
, and T.
Giorgi
, “Generalized Forchheimer flow in porous media
,” in Boundary Value Problems for Partial Differential Equations and Applications
, RMA Research Notes in Applied Mathematics Vol. 29 (Masson
, Paris
, 1993
), pp. 99
–111
.10.
L.
Hoang
and A.
Ibragimov
, “Structural stability of generalized Forchheimer equations for compressible fluids in porous media
,” Nonlinearity
24
, 1
–41
(2011
).11.
L.
Hoang
and A.
Ibragimov
, “Qualitative study of generalized Forchheimer flows with the flux boundary condition
,” Adv. Differ. Equations
17
(5-6
), 511
–556
(2012
).12.
L.
Hoang
, A.
Ibragimov
, T.
Kieu
, and Z.
Sobol
, “Stability of solutions to generalized Forchheimer equations of any degree
,” J. Math. Sci.
210
, 476
–544
(2015
).13.
L.
Hoang
and T.
Kieu
, “Global estimates for generalized Forchheimer flows of slightly compressible fluids
,” J. Anal. Math.
137
(1
), 1
–55
(2019
).14.
L. T.
Hoang
, A.
Ibragimov
, and T. T.
Kieu
, “One-dimensional two-phase generalized Forchheimer flows of incompressible fluids
,” J. Math. Anal. Appl.
401
, 921
–938
(2013
).15.
L. T.
Hoang
, A.
Ibragimov
, and T. T.
Kieu
, “A family of steady two-phase generalized Forchheimer flows and their linear stability analysis
,” J. Math. Phys.
55
, 123101
(2014
).16.
L. T.
Hoang
and T.
Kieu
, “Interior estimates for generalized Forchheimer flows of slightly compressible fluids
,” Adv. Nonlinear Stud.
17
, 739
–767
(2017
).17.
L. T.
Hoang
, T. T.
Kieu
, and T. V.
Phan
, “Properties of generalized Forchheimer flows in porous media
,” J. Math. Sci.
202
, 259
–332
(2014
).18.
T.
Kieu
, “Analysis of expanded mixed finite element methods for the generalized Forchheimer flows of slightly compressible fluids
,” Numer. Methods Partial Differ. Equations
32
, 60
–85
(2015
).19.
P.
Knabner
and G.
Summ
, Solvability of the Mixed Formulation for Darcy-Forchheimer Flow in Porous Media
(2017
), manuscript.20.
O. A.
Ladyženskaja
, V. A.
Solonnikov
, and N. N.
Ural’ceva
, Linear and Quasilinear Equations of Parabolic Type
, Translations of Mathematical Monographs Vol. 23 (American Mathematical Society
, Providence, RI
, 1968
), translated from the Russian by S. Smith.21.
O. A.
Ladyzhenskaya
and N. N.
Ural’tseva
, Linear and Quasilinear Elliptic Equations
(Academic Press
, New York
, 1968
), translated from the Russian by Scripta Technica, Inc. Translation editor L. Ehrenpreis.22.
J.-L.
Lions
, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires
(Dunod
, 1969
).23.
M.
Muskat
, The Flow of Homogeneous Fluids through Porous Media
(McGraw-Hill Book Company, Inc.
, 1937
).24.
E.-J.
Park
, “Mixed finite element methods for generalized Forchheimer flow in porous media
,” Numer. Methods Partial Differ. Equations
21
, 213
–228
(2005
).25.
P.
Raviart
, “Sur la résolution de certaines equations paraboliques non linéaires
,” J. Funct. Anal.
5
, 299
–328
(1970
).26.
D.
Sandri
, “Sur lápproximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de carreau
,” ESAIM: Math. Modell. Numer. Anal.
27
, 131
–155
(1993
).27.
R. E.
Showalter
, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations
, Mathematical Surveys and Monographs Vol. 49 (American Mathematical Society
, Providence, RI
, 1997
).28.
J. C.
Ward
, “Turbulent flow in porous media
,” J. Hydraul. Div., Proc. Am. Soc. Civ. Eng.
90
(HY5
), 1
–12
(1964
).29.
E.
Zeidler
, Nonlinear Functional Analysis and its Applications. II/B: Nonlinear Monotone Operators
(Springer-Verlag
, New York
, 1990
), translated from the German by the author and Leo F. Boron.© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.