The metric algebroid proposed by Vaisman (the Vaisman algebroid) governs the gauge symmetry algebra generated by the C-bracket in double field theory (DFT). We show that the Vaisman algebroid is obtained by an analog of the Drinfel’d double of Lie algebroids. Based on a geometric realization of doubled space-time as a para-Hermitian manifold, we examine exterior algebras and a para-Dolbeault cohomology on DFT and discuss the structure of the Drinfel’d double behind the DFT gauge symmetry. Similar to the Courant algebroid in the generalized geometry, Lagrangian sub-bundles (L,L̃) in a para-Hermitian manifold play Dirac-like structures in the Vaisman algebroid. We find that an algebraic origin of the strong constraint in DFT is traced back to the compatibility condition needed for (L,L̃) to be a Lie bialgebroid. The analysis provides a foundation toward the “coquecigrue problem” for the gauge symmetry in DFT.

1.
C.
Hull
and
B.
Zwiebach
, “
Double field theory
,”
J. High Energy Phys.
0909
,
099
(
2009
); e-print arXiv:0904.4664 [hep-th].
2.
C.
Hull
and
B.
Zwiebach
, “
The gauge algebra of double field theory and Courant brackets
,”
J. High Energy Phys.
09
(
09
),
090
(
2009
); e-print arXiv:0908.1792 [hep-th].
3.
O.
Hohm
and
B.
Zwiebach
, “
Large gauge transformations in double field theory
,”
J. High Energy Phys.
1302
,
075
(
2013
); e-print arXiv:1207.4198 [hep-th].
4.
W.
Siegel
, “
Superspace duality in low-energy superstrings
,”
Phys. Rev. D
48
,
2826
(
1993
); e-print arXiv:hep-th/9305073;
W.
Siegel
, “
Two vierbein formalism for string inspired axionic gravity
,”
Phys. Rev. D
47
,
5453
(
1993
); e-print arXiv:hep-th/9302036.
5.
Z.-J.
Liu
,
A.
Weinstein
, and
P.
Xu
, “
Manin triples for lie bialgebroids
,”
J. Differ. Geom.
45
,
547
(
1997
); e-print arXiv:dg-ga/9508013.
6.
D.
Roytenberg
and
A.
Weinstein
, “
Courant algebroids and strongly homotopy lie algebras
,”
Lett. Math. Phys.
46
,
81
93
(
1998
); e-print arXiv:math/9802118 [math.QA].
7.
M.
Gualtieri
, “
Generalized complex geometry
,”
Ann. Math.
174
,
75
(
2011
); e-print arXiv:math/0703298;
M.
Gualtieri
, “
Generalized complex geometry
,” Ph.D. thesis,
Oxford University
, (2004) e-print arXiv:math/0401221 [math.DG].
8.
O.
Hohm
and
B.
Zwiebach
, “
Towards an invariant geometry of double field theory
,”
J. Math. Phys.
54
,
032303
(
2013
); e-print arXiv:1212.1736 [hep-th].
9.
A.
Deser
and
C.
Sämann
, “
Extended Riemannian geometry I: Local double field theory
,”
Ann. Henri Poincare
19
,
2297
(
2018
); e-print arXiv:1611.02772 [hep-th].
10.
A.
Deser
and
C.
Sämann
, “
Derived brackets and symmetries in generalized geometry and double field theory
,”
PoS CORFU
2017
,
141
(
2018
); e-print arXiv:1803.01659 [hep-th].
11.
L.
Freidel
,
F. J.
Rudolph
, and
D.
Svoboda
, “
Generalised kinematics for double field theory
,”
J. High Energy Phys.
1711
,
175
(
2017
); e-print arXiv:1706.07089 [hep-th].
12.
L.
Freidel
,
F. J.
Rudolph
, and
D.
Svoboda
, “
A unique connection for Born geometry
,”
Commun. Math. Phys.
372
,
119
(
2019
); e-print arXiv:1806.05992 [hep-th].
13.
V. E.
Marotta
and
R. J.
Szabo
, “
Para-Hermitian geometry, dualities and generalized Flux backgrounds
,”
Fortsch. Phys.
67
,
1800093
(
2019
); e-print arXiv:1810.03953 [hep-th].
14.
D.
Svoboda
, “
Algebroid structures on para-Hermitian manifolds
,”
J. Math. Phys.
59
,
122302
(
2018
); e-print arXiv:1802.08180 [math.DG].
15.
I.
Vaisman
, “
On the geometry of double field theory
,”
J. Math. Phys.
53
,
033509
(
2012
); e-print arXiv:1203.0836 [math.DG].
16.
A.
Chatzistavrakidis
,
L.
Jonke
,
F. S.
Khoo
, and
R. J.
Szabo
, “
Double field theory and membrane sigma-models
,”
J. High Energy Phys.
1807
,
015
(
2018
); e-print arXiv:1802.07003 [hep-th].
17.
V. G.
Drinfel’d
, “
Hamiltonian structures of lie groups, lie bialgebras and the geometric meaning of the classical Yang-Baxter equations
,”
Sov. Math. Dokl.
27
,
68
(
1983
).
18.
I.
Vaisman
, “
Towards a double field theory on para-Hermitian manifolds
,”
J. Math. Phys.
54
,
123507
(
2013
); e-print arXiv:1209.0152 [math.DG].
19.
A.
Deser
and
J.
Stasheff
, “
Even symplectic supermanifolds and double field theory
,”
Commun. Math. Phys.
339
(
3
),
1003
(
2015
); e-print arXiv:1406.3601 [math-ph].
20.
Y.
Kosmann-Schwarzbach
, “
Lie bialgebras, Poisson Lie groups and dressing transformations
,” in
Integrability of Nonlinear Systems
, 2nd ed., Lecture Notes in Physics Vol. 638 (
Springer-Verlag
,
2004
), pp.
107
173
.
21.
C. M.
Marle
, “
The Schouten-Nijenhuis bracket and interior products
,”
J. Geom. Phys.
23
,
350
(
1997
).
22.
C.
Chevalley
and
S.
Eilenberg
, “
Cohomology theory of lie groups and lie algebras
,”
Trans. Am. Math. Soc.
63
,
85
(
1948
).
23.
J. A.
Schouten
, “
Über differentialkonkomitanten zweier kontravarianten grössen
,”
Indag. Math.
2
,
449
(
1940
);
J. A.
Schouten
, On The Differential Operators of the First Order in Tensor Calculus, Convegno International Geometry Differential Vol. 1 (
Cremonese
,
Italia
,
1953
);
A.
Nijenhuis
, “
Jacobi-type identities for bilinear differential concomitants of certain tensor fields I
,”
Indag. Math.
17
,
390
(
1955
).
24.
V. G.
Drinfel’d
, “
Quantum groups
,” in
Proceedings of the International Congress of Mathematicians
(
Amer. Math. Soc.
,
Berkeley
,
1986
), pp.
789
820
.
25.
J.
Pradines
, “
Théorie de Lie pour les groupodes différentiables. Relations entre propriétés locales et globales
,”
C. R. Acad. Sci. Paris, Sér. A-B
263
,
A907
(
1966
).
26.
K. C. H.
Mackenzie
and
P.
Xu
, “
Lie bialgebroids and Poisson groupoids
,”
Duke Math. J.
73
,
415
(
1994
).
27.
T. J.
Courant
, “
Dirac manifolds
,”
Trans. Am. Math. Soc.
319
,
631
(
1990
).
28.
K.
Uchino
, “
Remarks on the definition of a courant algebroid
,”
Lett. Math. Phys.
60
,
171
(
2002
); e-print arXiv:math/0204010 [math.DG].
29.
N.
Hitchin
, “
Generalized Calabi-Yau manifolds
,”
Q. J. Math.
54
,
281
(
2003
); e-print arXiv:math/0209099 [math-dg].
30.
D.
Roytenberg
, “
Courant algebroids, derived brackets and even symplectic supermanifolds
,” Ph.D. thesis,
UC Berkeley
, (2004) e-print arXiv:math/9910078 [math.DG].
31.
P.
Severa
and
A.
Weinstein
, “
Poisson geometry with a 3 form background
,”
Prog. Theor. Phys. Suppl.
144
,
145
(
2001
); e-print arXiv:math/0107133 [math-sg].
32.
I.
Vaisman
, “
Generalized Sasaki metrics on tangent bundles
,”
Ann. Alexandru Ioan Cuza Univ. - Math.
(published online); e-print arXiv:1312.4279 [math.DG].
33.
Y.
Kosmann-Schwarzbach
, “
Exact gerstenharber algebras and lie bialgebroids
,”
Acta Appl. Math.
41
,
153
(
1995
).
34.
W. M.
Tulczyjew
, “
The graded Lie algebra of multivector fields and the generalized Lie derivative of forms
,”
Bull. Acad. Pol. Sci., Sér. Sci. Math. Astr. Phys.
22
,
937
(
1974
).
35.
A.
Vaintrob
, “
Lie algebroids and homological vector fields
,”
Usp. Mat. Nauk
52
(
2(314)
),
161
(
1997
)
A.
Vaintrob
[
Russ. Math. Surv.
52
(
2
),
428
(
1997
) (in Russian)].
36.
T.
Kimura
,
S.
Sasaki
, and
K.
Shiozawa
, “
Worldsheet instanton corrections to five-branes and waves in double field theory
,”
J. High Energy Phys.
1807
,
001
(
2018
); e-print arXiv:1803.11087 [hep-th];
T.
Kimura
,
S.
Sasaki
, and
K.
Shiozawa
, “
Semi-doubled gauged linear sigma model for five-branes of codimension two
,”
J. High Energy Phys.
1812
,
095
(
2018
); e-print arXiv:1810.02169 [hep-th].
37.
U.
Carow-Watamura
,
N.
Ikeda
,
T.
Kaneko
, and
S.
Watamura
, “
DFT in supermanifold formulation and group manifold as background geometry
,”
J. High Energy Phys.
1904
,
002
(
2019
); e-print arXiv:1812.03464 [hep-th].
38.
D.
Roytenberg
, “
On the structure of graded symplectic supermanifolds and Courant algebroids
,” Contemp. Math., Vol. 315, Amer. Math. Soc., Providence, RI, 2002. e-print arXiv:math/0203110 [math-sg].
39.
Y.
Kosmann-Schwarzbach
, “
Derived brackets
,”
Lett. Math. Phys.
69
,
61
(
2004
); e-print arXiv:math/0312524 [math.DG].
40.
M.
Grana
and
D.
Marques
, “
Gauged double field theory
,”
J. High Energy Phys.
1204
,
020
(
2012
); e-print arXiv:1201.2924 [hep-th].
41.
F.
Hassler
, “
Poisson-lie T-duality in double field theory
,” e-print arXiv:1707.08624 [hep-th].
42.
D.
Lüst
and
D.
Osten
, “
Generalised fluxes, Yang-Baxter deformations and the O(d, d) structure of non-abelian T-duality
,”
J. High Energy Phys.
1805
,
165
(
2018
); e-print arXiv:1803.03971 [hep-th].
43.
V. E.
Marotta
,
F.
Pezzella
, and
P.
Vitale
, “
Doubling, T-duality and generalized geometry: A simple model
,”
J. High Energy Phys.
1808
,
185
(
2018
); e-print arXiv:1804.00744 [hep-th].
44.
P.
Ševera
and
F.
Valach
, “
Courant algebroids, Poisson-Lie T-duality, and type II supergravities
,” e-print arXiv:1810.07763 [math.DG].
45.
S.
Demulder
,
F.
Hassler
, and
D. C.
Thompson
, “
Doubled aspects of generalised dualities and integrable deformations
,”
J. High Energy Phys.
1902
,
189
(
2019
); e-print arXiv:1810.11446 [hep-th].
46.
J. H.
Park
, “
Comments on double field theory and diffeomorphisms
,”
J. High Energy Phys.
1306
,
098
(
2013
); e-print arXiv:1304.5946 [hep-th].
47.
D. S.
Berman
,
M.
Cederwall
, and
M. J.
Perry
, “
Global aspects of double geometry
,”
J. High Energy Phys.
1409
,
066
(
2014
); e-print arXiv:1401.1311 [hep-th].
48.
M.
Cederwall
, “
The geometry behind double geometry
,”
J. High Energy Phys.
1409
,
070
(
2014
); e-print arXiv:1402.2513 [hep-th].
49.
C. M.
Hull
, “
Finite gauge transformations and geometry in double field theory
,”
J. High Energy Phys.
1504
,
109
(
2015
); e-print arXiv:1406.7794 [hep-th].
50.
U.
Naseer
, “
A note on large gauge transformations in double field theory
,”
J. High Energy Phys.
1506
,
002
(
2015
); e-print arXiv:1504.05913 [hep-th].
51.
S. J.
Rey
and
Y.
Sakatani
, “
Finite transformations in doubled and exceptional space
,” e-print arXiv:1510.06735 [hep-th].
52.
P.
Ševera
and
M.
Širaň
, “
Integration of differential graded manifolds
,” e-print arXiv:1506.04898 [math.DG].
53.
D.
Li-Bland
and
P.
Ševera
, “
Integration of exact courant algebroids
,”
Electron. Res. Announce. Math. Sci.
19
,
58
(
2012
); e-print arXiv:1101.3996 [math.DG].
54.
T.
Kimura
and
S.
Sasaki
, “
Gauged linear sigma model for exotic five-brane
,”
Nucl. Phys. B
876
,
493
(
2013
); e-print arXiv:1304.4061 [hep-th];
T.
Kimura
and
S.
Sasaki
, “
Worldsheet instanton corrections to 522 -brane geometry
,”
J. High Energy Phys.
1308
,
126
(
2013
); e-print arXiv:1305.4439 [hep-th].
55.
J.
Berkeley
,
D. S.
Berman
, and
F. J.
Rudolph
, “
Strings and branes are waves
,”
J. High Energy Phys.
1406
,
006
(
2014
); e-print arXiv:1403.7198 [hep-th].
56.
D. S.
Berman
and
F. J.
Rudolph
, “
Branes are waves and monopoles
,”
J. High Energy Phys.
1505
,
015
(
2015
); e-print arXiv:1409.6314 [hep-th].
57.
I.
Bakhmatov
,
A.
Kleinschmidt
, and
E. T.
Musaev
, “
Non-geometric branes are DFT monopoles
,”
J. High Energy Phys.
1610
,
076
(
2016
); e-print arXiv:1607.05450 [hep-th].
58.
O.
Hohm
,
C.
Hull
, and
B.
Zwiebach
, “
Generalized metric formulation of double field theory
,”
J. High Energy Phys.
1008
,
008
(
2010
); e-print arXiv:1006.4823 [hep-th].
You do not currently have access to this content.