We show that the invariant measures of point vortices, when conditioning the Hamiltonian to a finite interval, converge weakly to the enstrophy measure by conditioning the renormalized energy to the same interval. We also prove the existence of solutions to 2D Euler equations having the energy conditional measure as an invariant measure. Some heuristic discussions and numerical simulations are presented in Sec. VI.

1.
S.
Albeverio
,
M.
Ribeiro de Faria
, and
R.
Høegh-Krohn
, “
Stationary measures for the periodic Euler flow in two dimensions
,”
J. Stat. Phys.
20
,
585
595
(
1979
).
2.
S.
Albeverio
and
B.
Ferrario
, “
Some methods of infinite dimensional analysis in hydrodynamics: An introduction
,” in
SPDE in Hydrodynamic: Recent Progress and Prospects
, CIME Lectures, edited by
G.
Da Prato
and
M.
Röckner
(
Springer-Verlag
,
Berlin
,
2008
).
3.
G.
Benfatto
,
P.
Picco
, and
M.
Pulvirenti
, “
On the invariant measures for the two-dimensional Euler flow
,”
J. Stat. Phys.
46
(
3-4
),
729
742
(
1987
).
4.
P.
Billingsley
,
Convergence of Probability Measures
, 2nd ed., Wiley Series in Probability and Statistics (
A Wiley-Interscience Publication; John Wiley & Sons, Inc.
,
New York
,
1999
).
5.
F.
Bouchet
and
A.
Venaille
, “
Statistical mechanics of two-dimensional and geophysical flows
,”
Phys. Rep.
515
(
5
),
227
295
(
2012
).
6.
E.
Caglioti
,
P. L.
Lions
,
C.
Marchioro
, and
M.
Pulvirenti
, “
A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description
,”
Commun. Math. Phys.
143
(
3
),
501
525
(
1992
).
7.
E.
Caglioti
,
P. L.
Lions
,
C.
Marchioro
, and
M.
Pulvirenti
, “
A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description. Part II
,”
Commun. Math. Phys.
174
(
2
),
229
260
(
1995
).
8.
F.
Cipriano
, “
The two-dimensional Euler equation: A statistical study
,”
Commun. Math. Phys.
201
(
1
),
139
154
(
1999
).
9.
G. L.
Eyink
and
H.
Spohn
, “
Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence
,”
J. Stat. Phys.
70
(
3-4
),
833
886
(
1993
).
10.
F.
Flandoli
, “
Weak vorticity formulation of 2D Euler equations with white noise initial condition
,”
Commun. Partial Differ. Equations
43
,
1102
1149
(
2018
).
11.
F.
Flandoli
and
D.
Luo
, “
Convergence of transport noise to Ornstein–Uhlenbeck for 2D Euler equations under the enstrophy measure
,”
Ann. Probab.
(to be published).
12.
F.
Flandoli
and
M.
Saal
, “
mSQG equations in distributional spaces and point vortex approximation
,” e-print arXiv:1812.05361v1.
13.
C.
Geldhauser
and
M.
Romito
, “
Limit theorems and fluctuations for point vortices of generalized Euler equations
,” e-print arXiv:1810.12706.
14.
F.
Grotto
, “
Stationary solutions of damped stochastic 2-dimensional Euler’s equation
,” e-print arXiv:1901.06744.
15.
F.
Grotto
and
M.
Romito
, “
A central limit theorem for Gibbsian invariant measures of 2D Euler equation
,” e-print arXiv:1904.01871v1.
16.
A. I.
Khinchin
,
Mathematical Foundations of Statistical Mechanics
, translated by G. Gamow (
Dover Publications, Inc.
,
New York, NY
,
1949
).
17.
P. L.
Lions
,
On Euler Equations and Statistical Physics
, [Galileo Chair] Scuola Normale Superiore (
Classe di Scienze
,
Pisa
,
1998
).
18.
P.
Malliavin
, “
Universal Wiener space
,” in
Barcelona Seminar on Stochastic Analysis: St. Feliu de Guxols, 1991
, Progress in Probability Vol. 32 (
Birkhäuser
,
Basel
,
1993
), pp.
77
102
.
19.
D.
Nualart
,
The Malliavin Calculus and Related Topics
, 2nd ed. (
Springer-Verlag Berlin Heidelberg
,
2006
).
20.
C.
Marchioro
and
M.
Pulvirenti
,
Mathematical Theory of Incompressible Nonviscous Fluids
, Volume 96 of Applied Mathematical Sciences (
Springer-Verlag
,
New York
,
1994
).
21.
C.
Neri
, “
Statistical mechanics of the N-point vortex system with random intensities on a bounded domain
,”
Ann. Inst. H. Poincaré Anal. Non Linéaire
21
(
3
),
381
399
(
2004
).
22.
S.
Schochet
, “
The weak vorticity formulation of the 2-D Euler equations and concentration-cancellation
,”
Commun. Partial Differ. Equations
20
(
5-6
),
1077
1104
(
1995
).
23.
B.
Simon
,
The P(ϕ)2 Euclidean (quantum) Field Theory
, Princeton Series in Physics (
Princeton University Press
,
Princeton, NJ
,
1974
).
24.
H.
Touchette
,
R. S.
Ellis
, and
B.
Turkington
, “
An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles
,”
Physica A
340
(
1-3
),
138
146
(
2004
).
25.
W. Y.
Yang
,
W.
Cao
,
T.-S.
Chung
, and
J.
Morris
,
Applied Numerical Methods Using MATLAB
(
Wiley-Interscience; John Wiley & Sons
,
Hoboken, NJ
,
2005
).
You do not currently have access to this content.