A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.
REFERENCES
1.
P.
Balseiro
, J. C.
Marrero
, D.
Martín de Diego
, and E.
Padrón
, “A unified framework for mechanics, Hamilton-Jacobi equation and applications
,” Nonlinearity
23
(8
), 1887
–1918
(2010
).2.
J.
Cariñena
, X.
Gràcia
, G.
Marmo
, E.
Martínez
, M.
Muñoz-Lecanda
, and N.
Roman-Roy
, “Geometric Hamilton-Jacobi theory
,” Int. J. Geom. Methods Mod. Phys.
3
(7
), 1417
–1458
(2006
).3.
J.
Cariñena
, X.
Gràcia
, G.
Marmo
, E.
Martínez
, M.
Muñoz-Lecanda
, and N.
Roman-Roy
, “Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems
,” Int. J. Geom. Methods Mod. Phys.
7
(3
), 431
–454
(2010
).4.
M.
de León
, J. C.
Marrero
, and D.
Martín de Diego
, “Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics
,” J. Geom. Mech.
2
, 159
–198
(2010
).5.
M.
de León
, D.
Martín de Diego
, and M.
Vaquero
, “A Hamilton-Jacobi theory on Poisson manifolds
,” J. Geom. Mech.
6
(1
), 121
–140
(2014
).6.
S.
Grillo
and E.
Padrón
, “A Hamilton-Jacobi theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds
,” J. Geom. Phys.
110
, 101
–129
(2016
).7.
W. M.
Boothby
, An Introduction to Differentiable Manifolds and Riemannian Geometry
(Academic Press
, New York
, 1985
).8.
S.
Kobayashi
and K.
Nomizu
, Foundations of Differential Geometry
(John Wiley & Sons
, New York
, 1963
).9.
J. E.
Marsden
and T. S.
Ratiu
, Manifolds, Tensor Analysis and Applications
(Springer-Verlag
, New York
, 2001
).10.
R.
Abraham
and J. E.
Marsden
, Foundation of Mechanics
(Benjaming Cummings
, New York
, 1985
).11.
V. I.
Arnold
, Mathematical Models in Classical Mechanics
(Springer-Verlag
, Berlin
, 1978
).12.
J. E.
Marsden
and T. S.
Ratiu
, Introduction to Mechanics and Symmetry
(Springer-Verlag
, New York
, 1994
).13.
P.
Libermann
and C.
Marle
, Symplectic Geometry and Analytical Mechanics
(Riedel
, Dordrecht
, 1987
).14.
R.
Mrugala
, J.
Nulton
, J.
Schön
, and P.
Salamon
, “Contact structure in thermodynamic theory
,” Rep. Math. Phys.
29
, 109
–121
(1991
).15.
A.
Bravetti
, H.
Cruz
, and D.
Tapias
, “Contact Hamiltonian mechanics
,” Ann. Phys.
376
, 17
–39
(2017
).16.
A.
Weinstein
, “On the hypotheses of Rabinowitz’ periodic orbit theorems
,” J. Differ. Equations
33
(3
), 353
–358
(1979
).17.
M.
de León
and C.
Sardón
, “Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems
,” J. Phys. A: Math. Theor.
50
, 255205
(2017
).18.
L.
Evans
, Partial Differential Equations
(American Mathematical Society
, Providence
, 2010
).19.
S. G.
Rajeev
, “A Hamilton–Jacobi formalism for thermodynamics
,” Ann. Phys.
323
(9
), 2265
–2285
(2008
).20.
A. S.
Mischenko
and A. T.
Fomenko
, “Generalized Liouville methods of integration of Hamiltonian systems
,” Funct. Anal. Appl.
12
(2
), 113
–1978
(1978
).21.
B.
Jovanovic
, “Symmetries and integrability
,” Publ. L’Inst. Math.
84
(98
), 1
–36
(2008
), Nouvelle Série.22.
B.
Jovanović
, “Noncommutative integrability and action angle variables in contact geometry
,” J. Symplectic Geom.
10
, 535
–562
(2012
).23.
B.
Jovanović
and V.
Jovanović
, “Contact flows and integrable systems
,” J. Geom. Phys.
87
, 217
–232
(2015
).24.
S.
Grillo
, “Non-commutative integrability, exact solvability and the Hamilton-Jacobi theory
,” arXiv:1804.10958 [nlin.SI].© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.