A Hamilton–Jacobi theory for general dynamical systems, defined on fibered phase spaces, has been recently developed. In this paper, we shall apply such a theory to contact Hamiltonian systems, as those appearing in thermodynamics and on geodesic flows in fluid mechanics. We first study the partial and complete solutions of the Hamilton–Jacobi equation related to these systems. Then, we show that, for a given contact system, the knowledge of what we have called a complete pseudo-isotropic solution ensures the integrability by quadratures of its equations of motion. This extends to contact manifolds a recent result obtained in the context of general symplectic and Poisson manifolds.

1.
P.
Balseiro
,
J. C.
Marrero
,
D.
Martín de Diego
, and
E.
Padrón
, “
A unified framework for mechanics, Hamilton-Jacobi equation and applications
,”
Nonlinearity
23
(
8
),
1887
1918
(
2010
).
2.
J.
Cariñena
,
X.
Gràcia
,
G.
Marmo
,
E.
Martínez
,
M.
Muñoz-Lecanda
, and
N.
Roman-Roy
, “
Geometric Hamilton-Jacobi theory
,”
Int. J. Geom. Methods Mod. Phys.
3
(
7
),
1417
1458
(
2006
).
3.
J.
Cariñena
,
X.
Gràcia
,
G.
Marmo
,
E.
Martínez
,
M.
Muñoz-Lecanda
, and
N.
Roman-Roy
, “
Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems
,”
Int. J. Geom. Methods Mod. Phys.
7
(
3
),
431
454
(
2010
).
4.
M.
de León
,
J. C.
Marrero
, and
D.
Martín de Diego
, “
Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics
,”
J. Geom. Mech.
2
,
159
198
(
2010
).
5.
M.
de León
,
D.
Martín de Diego
, and
M.
Vaquero
, “
A Hamilton-Jacobi theory on Poisson manifolds
,”
J. Geom. Mech.
6
(
1
),
121
140
(
2014
).
6.
S.
Grillo
and
E.
Padrón
, “
A Hamilton-Jacobi theory for general dynamical systems and integrability by quadratures in symplectic and Poisson manifolds
,”
J. Geom. Phys.
110
,
101
129
(
2016
).
7.
W. M.
Boothby
,
An Introduction to Differentiable Manifolds and Riemannian Geometry
(
Academic Press
,
New York
,
1985
).
8.
S.
Kobayashi
and
K.
Nomizu
,
Foundations of Differential Geometry
(
John Wiley & Sons
,
New York
,
1963
).
9.
J. E.
Marsden
and
T. S.
Ratiu
,
Manifolds, Tensor Analysis and Applications
(
Springer-Verlag
,
New York
,
2001
).
10.
R.
Abraham
and
J. E.
Marsden
,
Foundation of Mechanics
(
Benjaming Cummings
,
New York
,
1985
).
11.
V. I.
Arnold
,
Mathematical Models in Classical Mechanics
(
Springer-Verlag
,
Berlin
,
1978
).
12.
J. E.
Marsden
and
T. S.
Ratiu
,
Introduction to Mechanics and Symmetry
(
Springer-Verlag
,
New York
,
1994
).
13.
P.
Libermann
and
C.
Marle
,
Symplectic Geometry and Analytical Mechanics
(
Riedel
,
Dordrecht
,
1987
).
14.
R.
Mrugala
,
J.
Nulton
,
J.
Schön
, and
P.
Salamon
, “
Contact structure in thermodynamic theory
,”
Rep. Math. Phys.
29
,
109
121
(
1991
).
15.
A.
Bravetti
,
H.
Cruz
, and
D.
Tapias
, “
Contact Hamiltonian mechanics
,”
Ann. Phys.
376
,
17
39
(
2017
).
16.
A.
Weinstein
, “
On the hypotheses of Rabinowitz’ periodic orbit theorems
,”
J. Differ. Equations
33
(
3
),
353
358
(
1979
).
17.
M.
de León
and
C.
Sardón
, “
Cosymplectic and contact structures for time-dependent and dissipative Hamiltonian systems
,”
J. Phys. A: Math. Theor.
50
,
255205
(
2017
).
18.
L.
Evans
,
Partial Differential Equations
(
American Mathematical Society
,
Providence
,
2010
).
19.
S. G.
Rajeev
, “
A Hamilton–Jacobi formalism for thermodynamics
,”
Ann. Phys.
323
(
9
),
2265
2285
(
2008
).
20.
A. S.
Mischenko
and
A. T.
Fomenko
, “
Generalized Liouville methods of integration of Hamiltonian systems
,”
Funct. Anal. Appl.
12
(
2
),
113
1978
(
1978
).
21.
B.
Jovanovic
, “
Symmetries and integrability
,”
Publ. L’Inst. Math.
84
(
98
),
1
36
(
2008
), Nouvelle Série.
22.
B.
Jovanović
, “
Noncommutative integrability and action angle variables in contact geometry
,”
J. Symplectic Geom.
10
,
535
562
(
2012
).
23.
B.
Jovanović
and
V.
Jovanović
, “
Contact flows and integrable systems
,”
J. Geom. Phys.
87
,
217
232
(
2015
).
24.
S.
Grillo
, “
Non-commutative integrability, exact solvability and the Hamilton-Jacobi theory
,” arXiv:1804.10958 [nlin.SI].
You do not currently have access to this content.