We derive two equivalent analytical expressions for an lth partial-wave scattering length al for central potentials with long-range tails of the form V(r)=22mBrn4(rn2+Rn2)222mCr2(rn2+Rn2), (rrs, R > 0). For C = 0, this family of potentials reduces to the Lenz potentials discussed in a similar context in our earlier works [R. Szmytkowski, Acta Phys. Pol. A 79, 613 (1991); J. Phys. A: Math. Gen. 28, 7333 (1995)]. The formulas for al that we provide in this paper depend on the parameters B, C, and R characterizing the tail of the potential, on the core radius rs, as well as on the short-range scattering length als, the latter being due to the core part of the potential. The procedure, which may be viewed as an analytical extrapolation from als to al, is relied on the fact that the general solution to the zero-energy radial Schrödinger equation with the potential given above may be expressed analytically in terms of the generalized associated Legendre functions.

1.
U.
Fano
and
A. R. P.
Rau
,
Atomic Collisions and Spectra
(
Academic
,
Orlando, FL
,
1986
).
2.
H. R.
Sadeghpour
,
J. L.
Bohn
,
M. J.
Cavagnero
,
B. D.
Esry
,
I. I.
Fabrikant
,
J. H.
Macek
, and
A. R. P.
Rau
, “
Collisions near threshold in atomic and molecular physics
,”
J. Phys. B: At. Mol. Opt. Phys.
33
,
R93
(
2000
).
3.
M.
Borkowski
,
R.
Muñoz Rodriguez
,
M. B.
Kosicki
,
R.
Ciurylo
, and
P. S.
Żuchowski
, “
Optical Feshbach resonances and ground-state-molecule production in the RbHg system
,”
Phys. Rev. A
96
,
063411
(
2017
).
4.
A.
Guttridge
,
M. D.
Frye
,
B. C.
Yang
,
J. M.
Hutson
, and
S. L.
Cornish
, “
Two-photon photoassociation spectroscopy of CsYb: Ground-state interaction potential and interspecies scattering lengths
,”
Phys. Rev. A
98
,
022707
(
2018
).
5.
A.
Temkin
, “
Polarization and the triplet electron–hydrogen scattering length
,”
Phys. Rev. Lett.
6
,
354
(
1961
).
6.
T.
Tietz
, “
Elastic scattering of low-energy electrons and the periodic system of elements
,”
J. Chem. Phys.
38
,
1027
(
1963
).
7.
T.
Tietz
and
C.
Malinowska
, “
Note concerning the elastic scattering of low-energy electrons in Thomas–Fermi theory
,”
J. Chem. Phys.
39
,
2778
(
1963
).
8.
T.
Tietz
, “
Pressure shift of the high series of the alkali metals
,”
Nuovo Cimento
28
,
1509
(
1963
).
9.
T.
Tietz
, “
Low energy electron–atom scattering cross-section in Thomas–Fermi theory
,”
Z. Naturforsch. A
21
,
360
(
1966
).
10.
T.
Tietz
, “
The elastic scattering of low energy electrons in Thomas–Fermi theory
,” in:
VII International Conference on the Physics of Electronic and Atomic Collisions
, edited by
L. M.
Branscomb
, et al.
(
North-Holland
,
Amsterdam
,
1971
), Vol. 1, p.
81
.
11.
S. H.
Patil
, “
Analytic scattering length for potential scattering
,”
Phys. Rev. A
24
,
3038
(
1981
).
12.
J.
Horáček
, “
Analytic scattering length and critical constants for potential scattering
,”
J. Phys. A: Math. Gen.
20
,
2699
(
1987
).
13.
R.
Szmytkowski
, “
Calculation of the electron scattering lengths for noble atoms
,”
Fizika
22
,
481
(
1990
).
14.
R.
Szmytkowski
, “
On the exact calculation of the scattering lengths for long range potentials. I. The inverse power potentials
,”
Acta Phys. Pol. A
78
,
517
(
1990
).
15.
R.
Szmytkowski
, “
On the exact calculation of the scattering lengths for long range potentials. II. Lenz potentials
,”
Acta Phys. Pol. A
79
,
613
(
1991
).
16.
G. F.
Gribakin
and
V. V.
Flambaum
, “
Calculation of the scattering length in atomic collisions using the semiclassical approximation
,”
Phys. Rev. A
48
,
546
(
1993
).
17.
M.
Marinescu
, “
Computation of the scattering length and effective range in molecular physics
,”
Phys. Rev. A
50
,
3177
(
1994
).
18.
R.
Szmytkowski
, “
Calculation of the electron-scattering lengths for rare-gas atoms
,”
Phys. Rev. A
51
,
853
(
1995
).
19.
R.
Szmytkowski
, “
Analytical calculations of scattering lengths in atomic physics
,”
J. Phys. A: Math. Gen.
28
,
7333
(
1995
).
20.
R.
Szmytkowski
, “
Analytical independent-particle model for electron scattering by argon at low energy
,”
Few-Body Syst.
20
,
175
(
1996
).
21.
J. A.
Kunc
, “
Low-energy electron–atom scattering in a field of model potentials
,”
J. Phys. B: At. Mol. Opt. Phys.
32
,
607
(
1999
).
22.
C.
Eltschka
,
M. J.
Moritz
, and
H.
Friedrich
, “
Near-threshold quantization and scattering for deep potentials with attractive tails
,”
J. Phys. B: At. Mol. Opt. Phys.
33
,
4033
(
2000
).
23.
B.
Gao
, “
Zero-energy or quasibound states and their implications for diatomic systems with an asymptotic van der Waals interaction
,”
Phys. Rev. A
62
,
050702
(
2000
).
24.
M. J.
Jamieson
and
B.
Zygelman
, “
Mass dependence of scattering lengths for hydrogen atoms
,”
Phys. Rev. A
64
,
032703
(
2001
).
25.
G.
Jacoby
and
H.
Friedrich
, “
Near-threshold properties of a 1/r4 plus 1/r5 potential tail
,”
J. Phys. B: At. Mol. Opt. Phys.
35
,
4839
(
2002
).
26.
B.
Gao
, “
Effective potentials for atom–atom interactions at low temperatures
,”
J. Phys. B: At. Mol. Opt. Phys.
36
,
2111
(
2003
).
27.
H.
Ouerdane
,
M. J.
Jamieson
,
D.
Vrinceanu
, and
M. J.
Cavagnero
, “
The variable phase method used to calculate and correct scattering lengths
,”
J. Phys. B: At. Mol. Opt. Phys.
36
,
4055
(
2003
).
28.
B.
Gao
, “
Binding energy and scattering length for diatomic systems
,”
J. Phys. B: At. Mol. Opt. Phys.
37
,
4273
(
2004
).
29.
R.
Szmytkowski
and
K.
Mielewczyk
, “
Exact analytical scattering lengths for a class of long-range potentials with r−4 asymptotics
,”
Phys. Rev. A
69
,
064701
(
2004
).
30.
A.
Crubellier
and
E.
Luc-Koenig
, “
Threshold effects in the photoassociation of cold atoms: R−6 model in the Milne formalism
,”
J. Phys. B: At. Mol. Opt. Phys.
39
,
1417
(
2006
).
31.
J.
Pade
, “
Exact scattering length for a potential of Lennard-Jones type
,”
Eur. Phys. J. D
44
,
345
(
2007
).
32.
A. S.
Dickinson
, “
Semiclassical approximation for the scattering volume in cold-atom collisions
,”
J. Phys. B: At. Mol. Opt. Phys.
41
,
175302
(
2008
).
33.
H.
Friedrich
and
P.
Raab
, “
Near-threshold quantization and scattering lengths
,”
Phys. Rev. A
77
,
012703
(
2008
).
34.
M. S.
Hussein
,
W.
Li
, and
S.
Wüster
, “
Canonical quantum potential scattering theory
,”
J. Phys. A: Math. Gen.
51
,
475207
(
2008
).
35.
P.
Raab
and
H.
Friedrich
, “
Near the threshold of potentials—Quantization rules and scattering lengths
,”
J. Phys.: Conf. Ser.
99
,
012015
(
2008
).
36.
J.
Pade
, “
Exact solutions of the Schrödinger equation for zero-energy
,”
Eur. Phys. J. D
53
,
41
(
2009
).
37.
P.
Raab
and
H.
Friedrich
, “
Quantization function for potentials with −1/r4 tails
,”
Phys. Rev. A
80
,
052705
(
2009
).
38.
S.
Gautam
and
D.
Angom
, “
Scattering length for fermionic alkali atoms
,”
Eur. Phys. J. D
56
,
173
(
2010
).
39.
M. J.
Jamieson
,
A. S. C.
Cheung
, and
H.
Ouerdane
, “
Dependence of the scattering length for hydrogen atoms on effective mass
,”
Eur. Phys. J. D
56
,
181
(
2010
).
40.
H.
Ouerdane
and
M. J.
Jamieson
, “
Comment on “Scattering length for fermionic alkali atoms”
,”
Eur. Phys. J. D
57
,
325
(
2010
).
41.
M. J.
Jamieson
and
H.
Ouerdane
, “
Error cancellation in the semiclassical calculation of the scattering length
,”
Eur. Phys. J. D
61
,
373
(
2011
).
42.
V. V.
Meshkov
,
A. V.
Stolyarov
, and
R. J.
Le Roy
, “
Rapid, accurate calculation of the s-wave scattering length
,”
J. Chem. Phys.
135
,
154108
(
2011
).
43.
T.-O.
Müller
,
A.
Kaiser
, and
H.
Friedrich
, “
s-wave scattering for deep potentials with attractive tails falling off faster than −1/r2
,”
Phys. Rev. A
84
,
032701
(
2011
).
44.
F. J.
Gómez
and
J.
Sesma
, “
Scattering length for Lennard-Jones potentials
,”
Eur. Phys. J. D
66
,
6
(
2012
).
45.
B.
Gao
, “
Quantum-defect theory for −1/r4-type interactions
,”
Phys. Rev. A
88
,
022701
(
2013
).
46.
N.
Virchenko
and
I.
Fedotova
,
Generalized Associated Legendre Functions and Their Applications
(
World Scientific
,
Singapore
,
2001
).
47.

We follow the terminology adopted in Ref. 19 and call al the scattering length whatever the value of l is. However, it is evident from the definition (2.1) that the physical dimension of al is (length)2l+1, i.e., a0 has the physical dimension of length, a1 has the physical dimension of volume, and so on.

48.
V. V.
Babikov
,
Method of Phase Functions in Quantum Mechanics
, 3rd ed. (
Nauka
,
Moscow
,
1988
) (in Russian).
49.
H.
Bateman
, “
A generalisation of the Legendre polynomial
,”
Proc. London Math. Soc.
3
,
111
(
1905
).
50.
L.
Kuipers
and
B.
Meulenbeld
, “
On a generalisation of Legendre’s associated differential equation. I
,”
Indag. Math.
19
,
436
(
1957
).
51.
L.
Kuipers
and
B.
Meulenbeld
, “
On a generalisation of Legendre’s associated differential equation. II
,”
Indag. Math.
19
,
444
(
1957
).
52.
L.
Kuipers
, “
Relations between contiguous generalized Legendre associated functions (recurrence formulas)
,”
Math. Scand.
6
,
200
(
1958
).
53.
W.
Magnus
,
F.
Oberhettinger
, and
R. P.
Soni
,
Formulas and Theorems for the Special Functions of Mathematical Physics
, 3rd ed. (
Springer
,
Berlin
,
1966
).
You do not currently have access to this content.