A probability space is a pair () where is an algebra and ϕ is a state on the algebra. In classical probability, is the algebra of linear combinations of indicator functions on the sample space, and in quantum probability, is the Heisenberg or Clifford algebra. However, other algebras are of interest in noncommutative probability. After a short review of the framework of classical and quantum probability, other noncommutative probability spaces are discussed, in particular those associated with noncommutative space-time.
REFERENCES
1.
R.
Vilela Mendes
, “Geometry, stochastic calculus and quantum fields in a non-commutative space-time
,” J. Math. Phys.
41
, 156
–186
(2000
).2.
L.
Accardi
, A.
Frigerio
, and J. T.
Lewis
, “Quantum stochastic processes
,” Publ. Res. Inst. Math. Sci.
18
, 97
–133
(1982
).3.
R. L.
Hudson
and K. R.
Parthasarathy
, “Quantum Ito’s formula and stochastic evolutions
,” Commun. Math. Phys.
93
, 301
–323
(1984
).4.
K. R.
Parthasarathy
, An Introduction to Quantum Stochastic Calculus
, Monographs in Mathematics (Birkhäuser Verlag
, Basel
, 1992
), Vol. 85.5.
P. A.
Meyer
, Quantum Probability for Probabilists
, Lecture Notes in Mathematics (SpringerVerlag
, Berlin
, 1993
), Vol. 1538.6.
N. Ja.
Vilenkin
and A. U.
Klimyk
, Representation of Lie Groups and Special Functions
(Kluwer
, Dordrecht
, 1993
) Vol. 2.7.
L.
Accardi
and A.
Boukas
, “Square of white noise unitary evolutions on Boson Fock space
,” in Proceedings of the International Conference on Stochastic Analysis and Applications
, edited by S.
Albeverio
, A. B.
de Monvel
, and H.
Ouerdiane
(Springer
, 2002
), pp. 267
–301
.8.
L.
Accardi
, U.
Franz
, and M.
Skeide
, “Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras
,” Commun. Math. Phys.
228
, 123
–150
(2002
).9.
L.
Accardi
and A.
Dhahri
, “The quadratic Fock functor
,” J. Math. Phys.
51
, 022113
(2010
).10.
C.
Barnett
, R. F.
Streater
, and I. F.
Wilde
, “The Ito-Clifford integral
,” J. Funct. Anal.
48
, 172
–212
(1982
).11.
C.
Barnett
, R. F.
Streater
, and I. F.
Wilde
, “Quasi-free quantum stochastic integrals for the CAR and CCR
,” J. Funct. Anal.
52
, 19
–47
(1983
).12.
E.
Carlen
and P.
Krée
, “On Martingale inequalities in non-commutative stochastic analysis
,” J. Funct. Anal.
158
, 475
–508
(1998
).13.
R. L.
Hudson
and K. R.
Parthasarathy
, “Unification of Fermion and Boson stochastic calculus
,” Commun. Math. Phys.
104
, 457
–470
(1986
).14.
A.
Boukas
, “An example of a quantum exponential process
,” Monatsh. Math.
112
, 209
–215
(1991
).15.
N.
Privault
, “Splitting of Poisson noise and Lévy processes on real Lie algebras
,” Infinite Dimens. Anal. Quantum Probab. Relat. Top.
5
, 21
–40
(2002
).16.
M.
Bozejko
and R.
Speicher
, “An example of a generalized Brownian motion
,” Commun. Math. Phys.
137
, 519
–531
(1991
).17.
M.
Bozejko
, W.
Ejsmont
, and T.
Hasebe
, “Fock space associated to Coxeter groups of type B
,” J. Funct. Anal.
269
, 1769
–1795
(2015
).18.
W.
Ejsmont
, “Partitions and deformed cumulants of type B with remarks on the Blitvic model
,” e-print arXiv:1811.02675.19.
M.
Bozejko
, S. R.
Gal
, and W.
Młotkowski
, “Positive definite functions on Coxeter groups with applications to operator spaces and noncommutative probability
,” Commun. Math. Phys.
361
, 583
–604
(2018
).20.
R. V.
Mendes
, “Deformations, stable theories and fundamental constants
,” J. Phys. A: Math. Gen.
27
, 8091
–8104
(1994
).21.
R. V.
Mendes
, “The geometry of non-commutative space-time
,” Int. J. Theor. Phys.
56
, 259
–269
(2017
).22.
T. D.
Palev
, “Lie algebraic aspects of quantum statistics. Unitary quantization (A-quantization)
,” preprint arXiv:hep-th/9705032, JINR preprint E17-10550.23.
T. D.
Palev
, “Do new quantum statistics exist in nature?
,” in Nuclear Theory
, edited by A. I.
Georgieva
and N.
Minkov
(Heron Press
, Sofia
, 2013
), Vol. 32; e-print arXiv:1412.4335.24.
See, for example, the proceedings of the series of conferences “Quantum Probability and Infinite Dimensional Analysis” and references therein.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.