A probability space is a pair (A,ϕ) where A is an algebra and ϕ is a state on the algebra. In classical probability, A is the algebra of linear combinations of indicator functions on the sample space, and in quantum probability, A is the Heisenberg or Clifford algebra. However, other algebras are of interest in noncommutative probability. After a short review of the framework of classical and quantum probability, other noncommutative probability spaces are discussed, in particular those associated with noncommutative space-time.

1.
R.
Vilela Mendes
, “
Geometry, stochastic calculus and quantum fields in a non-commutative space-time
,”
J. Math. Phys.
41
,
156
186
(
2000
).
2.
L.
Accardi
,
A.
Frigerio
, and
J. T.
Lewis
, “
Quantum stochastic processes
,”
Publ. Res. Inst. Math. Sci.
18
,
97
133
(
1982
).
3.
R. L.
Hudson
and
K. R.
Parthasarathy
, “
Quantum Ito’s formula and stochastic evolutions
,”
Commun. Math. Phys.
93
,
301
323
(
1984
).
4.
K. R.
Parthasarathy
,
An Introduction to Quantum Stochastic Calculus
, Monographs in Mathematics (
Birkhäuser Verlag
,
Basel
,
1992
), Vol. 85.
5.
P. A.
Meyer
,
Quantum Probability for Probabilists
, Lecture Notes in Mathematics (
SpringerVerlag
,
Berlin
,
1993
), Vol. 1538.
6.
N. Ja.
Vilenkin
and
A. U.
Klimyk
,
Representation of Lie Groups and Special Functions
(
Kluwer
,
Dordrecht
,
1993
) Vol. 2.
7.
L.
Accardi
and
A.
Boukas
, “
Square of white noise unitary evolutions on Boson Fock space
,” in
Proceedings of the International Conference on Stochastic Analysis and Applications
, edited by
S.
Albeverio
,
A. B.
de Monvel
, and
H.
Ouerdiane
(
Springer
,
2002
), pp.
267
301
.
8.
L.
Accardi
,
U.
Franz
, and
M.
Skeide
, “
Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras
,”
Commun. Math. Phys.
228
,
123
150
(
2002
).
9.
L.
Accardi
and
A.
Dhahri
, “
The quadratic Fock functor
,”
J. Math. Phys.
51
,
022113
(
2010
).
10.
C.
Barnett
,
R. F.
Streater
, and
I. F.
Wilde
, “
The Ito-Clifford integral
,”
J. Funct. Anal.
48
,
172
212
(
1982
).
11.
C.
Barnett
,
R. F.
Streater
, and
I. F.
Wilde
, “
Quasi-free quantum stochastic integrals for the CAR and CCR
,”
J. Funct. Anal.
52
,
19
47
(
1983
).
12.
E.
Carlen
and
P.
Krée
, “
On Martingale inequalities in non-commutative stochastic analysis
,”
J. Funct. Anal.
158
,
475
508
(
1998
).
13.
R. L.
Hudson
and
K. R.
Parthasarathy
, “
Unification of Fermion and Boson stochastic calculus
,”
Commun. Math. Phys.
104
,
457
470
(
1986
).
14.
A.
Boukas
, “
An example of a quantum exponential process
,”
Monatsh. Math.
112
,
209
215
(
1991
).
15.
N.
Privault
, “
Splitting of Poisson noise and Lévy processes on real Lie algebras
,”
Infinite Dimens. Anal. Quantum Probab. Relat. Top.
5
,
21
40
(
2002
).
16.
M.
Bozejko
and
R.
Speicher
, “
An example of a generalized Brownian motion
,”
Commun. Math. Phys.
137
,
519
531
(
1991
).
17.
M.
Bozejko
,
W.
Ejsmont
, and
T.
Hasebe
, “
Fock space associated to Coxeter groups of type B
,”
J. Funct. Anal.
269
,
1769
1795
(
2015
).
18.
W.
Ejsmont
, “
Partitions and deformed cumulants of type B with remarks on the Blitvic model
,” e-print arXiv:1811.02675.
19.
M.
Bozejko
,
S. R.
Gal
, and
W.
Młotkowski
, “
Positive definite functions on Coxeter groups with applications to operator spaces and noncommutative probability
,”
Commun. Math. Phys.
361
,
583
604
(
2018
).
20.
R. V.
Mendes
, “
Deformations, stable theories and fundamental constants
,”
J. Phys. A: Math. Gen.
27
,
8091
8104
(
1994
).
21.
R. V.
Mendes
, “
The geometry of non-commutative space-time
,”
Int. J. Theor. Phys.
56
,
259
269
(
2017
).
22.
T. D.
Palev
, “
Lie algebraic aspects of quantum statistics. Unitary quantization (A-quantization)
,” preprint arXiv:hep-th/9705032, JINR preprint E17-10550.
23.
T. D.
Palev
, “
Do new quantum statistics exist in nature?
,” in
Nuclear Theory
, edited by
A. I.
Georgieva
and
N.
Minkov
(
Heron Press
,
Sofia
,
2013
), Vol. 32; e-print arXiv:1412.4335.
24.

See, for example, the proceedings of the series of conferences “Quantum Probability and Infinite Dimensional Analysis” and references therein.

You do not currently have access to this content.