The inverse Henderson problem of statistical mechanics is the theoretical foundation for many bottom-up coarse-graining techniques for the numerical simulation of complex soft matter physics. This inverse problem concerns classical particles in continuous space which interact according to a pair potential depending on the distance of the particles. Roughly stated, it asks for the interaction potential given the equilibrium pair correlation function of the system. In 1974, Henderson proved that this potential is uniquely determined in a canonical ensemble and he claimed the same result for the thermodynamical limit of the physical system. Here, we provide a rigorous proof of a slightly more general version of the latter statement using Georgii’s variant of the Gibbs variational principle.

1.
E.
Brini
,
E. A.
Algaer
,
P.
Ganguly
,
C.
Li
,
F.
Rodríguez-Ropero
, and
N. F. A.
van der Vegt
, “
Systematic coarse-graining methods for soft matter simulations – a review
,”
Soft Matter
9
,
2108
2119
(
2013
).
2.
E.
Caglioti
,
T.
Kuna
,
J. L.
Lebowitz
, and
E. R.
Speer
, “
Point processes with specified low order correlations
,”
Markov Process. Relat. Fields
12
,
257
272
(
2006
).
3.
S. P.
Carmichael
and
M. S.
Shell
, “
A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly
,”
J. Phys. Chem. B
116
,
8383
8393
(
2012
).
4.
J. T.
Chayes
and
L.
Chayes
, “
On the validity of the inverse conjecture in classical density functional theory
,”
J. Stat. Phys.
36
,
471
488
(
1984
).
5.
J. T.
Chayes
,
L.
Chayes
, and
E. H.
Lieb
, “
The inverse problem in classical statistical mechanics
,”
Commun. Math. Phys.
93
,
57
121
(
1984
).
6.
D.
Dereudre
, “
Variational principle for Gibbs point processes with finite range interaction
,”
Electron. Commun. Probab.
21
,
10
21
(
2016
).
7.
L.
Delle Site
,
M.
Deserno
,
B.
Dünweg
,
C.
Holm
,
C.
Peter
, and
H.
Pleiner
, “
Modern simulation approaches in soft matter science: From fundamental understanding to industrial applications
,”
Eur. Phys. J. Spec. Top.
225
,
1317
1321
(
2016
).
8.
R.
Dobrushin
, “
Investigation of conditions for the asymptotic existence of the configuration integral of Gibbs’ distribution
,”
Theor. Probab. Appl.
9
,
566
581
(
1964
).
9.
F.
Delbary
,
M.
Hanke
, and
D.
Ivanizki
, “
A generalized Newton iteration for computing the solution of the inverse Henderson problem
,” e-print arXiv:1806.11135.
10.
G.
Gallavotti
,
Statistical Mechanics: A Short Treatise
(
Springer
,
Berlin
,
1999
).
11.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 4th ed. (
Academic Press
,
Oxford
,
2013
).
12.
H.-O.
Georgii
, “
Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction
,”
Probab. Theory Relat. Fields
99
,
171
195
(
1994
).
13.
H.-O.
Georgii
, “
The equivalence of ensembles for classical systems of particles
,”
J. Stat. Phys.
80
,
1341
1378
(
1995
).
14.
H.-O.
Georgii
,
Gibbs Measures and Phase Transitions
, 2nd ed. (
De Gruyter
,
Berlin
,
2011
).
15.
H.-O.
Georgii
and
H.
Zessin
, “
Large deviations and the maximum entropy principle for marked point random fields
,”
Probab. Theory Relat. Fields
96
,
177
204
(
1993
).
16.
J.
Gibbs
,
Elementary Principles in Statistical Mechanics
(
Scribner’s Sons
,
New York
,
1902
).
17.
R.
Griffiths
and
D.
Ruelle
, “
Strict convexity (“continuity”) of the pressure in lattice systems
,”
Commun. Math. Phys.
23
,
169
175
(
1971
).
18.
M.
Hanke
,
A Taste of Inverse Problems. Basic Theory and Examples
(
SIAM
,
Philadelphia
,
2017
).
19.
M.
Heinen
, “
Calculating particle pair potentials from fluid-state pair correlations: Iterative Ornstein-Zernike inversion
,”
J. Comput. Chem.
39
,
1531
1543
(
2018
).
20.
R.
Henderson
, “
A uniqueness theorem for fluid pair correlation functions
,”
Phys. Lett. A
49
,
197
198
(
1974
).
21.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
B864
B871
(
1964
).
22.
N. M.
Hugenholtz
, “
On the inverse problem in statistical mechanics
,”
Commun. Math. Phys.
85
,
27
38
(
1982
).
23.
Y. G.
Kondratiev
and
T.
Kuna
, “
Correlation functionals for Gibbs measures and Ruelle bounds
,”
Methods Funct. Anal. Topol.
9
,
9
58
(
2003
).
24.
L.
Koralov
, “
An inverse problem for Gibbs fields with hard core potential
,”
J. Math. Phys.
48
,
053301
(
2007
).
25.
T.
Kuna
, “
Studies in configuration space analysis and applications
,” Ph.D. thesis,
Rheinische Friedrich-Wilhelms-Universität
,
Bonn
,
1999
.
26.
T.
Kuna
,
J. L.
Lebowitz
, and
E. R.
Speer
, “
Realizability of point processes
,”
J. Stat. Phys.
129
,
417
439
(
2007
).
27.
T.
Kuna
,
J. L.
Lebowitz
, and
E. R.
Speer
, “
Necessary and sufficient conditions for realizability of point processes
,”
Ann. Appl. Probab.
21
,
1253
1281
(
2011
).
28.
D.
Levesque
,
J. J.
Weis
, and
L.
Reatto
, “
Pair interaction from structural data for dense classical liquids
,”
Phys. Rev. Lett.
54
,
451
454
(
1985
).
29.
A. P.
Lyubartsev
and
A.
Laaksonen
, “
Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach
,”
Phys. Rev. E
52
,
3730
3737
(
1995
).
30.
A. P.
Lyubartsev
,
A.
Naômé
,
D. P.
Vercauteren
, and
A.
Laaksonen
, “
Systematic hierarchical coarse-graining with the inverse Monte Carlo method
,”
J. Chem. Phys.
143
,
243120
(
2015
).
31.
S. Y.
Mashayak
,
L.
Miao
, and
N. R.
Aluru
, “
Integral equation theory based direct and accelerated systematic coarse-graining approaches
,”
J. Chem. Phys.
148
,
214105
(
2018
).
32.
N.
Mermin
, “
Thermal properties of the inhomogeneous electron gas
,”
Phys. Rev.
137
,
A1471
A1473
(
1965
).
33.
I.
Navrotskaya
, “
Inverse problem in classical statistical mechanics
,” Ph.D. thesis,
University of Pittsburgh
,
2016
.
34.
W. G.
Noid
, “
Perspective: Coarse-grained models for biomolecular systems
,”
J. Chem. Phys.
139
,
090901
(
2013
).
35.
C.
Peter
and
K.
Kremer
, “
Multiscale simulation of soft matter systems
,”
Faraday Discuss.
144
,
9
24
(
2010
).
36.
B. L.
Peters
,
K. M.
Salerno
,
A.
Agrawal
,
D.
Perahia
, and
G. S.
Grest
, “
Coarse-grained modeling of polyethylene melts: Effect on dynamics
,”
J. Chem. Theor. Comput.
13
,
2890
2896
(
2017
).
37.
R.
Potestio
,
C.
Peter
, and
K.
Kremer
, “
Computer simulations of soft matter: Linking the scales
,”
Entropy
16
,
4199
4245
(
2014
).
38.
M.
Praprotnik
,
L.
Delle Site
, and
K.
Kremer
, “
Adaptive resolution molecular-dynamics simulation: Changing the degrees of freedom on the fly
,”
J. Chem. Phys.
123
,
224106
(
2005
).
39.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
, “
Deriving effective mesoscale potentials from atomistic simulations
,”
J. Comput. Chem.
24
,
1624
1636
(
2003
).
40.
D. W.
Robinson
and
D.
Ruelle
, “
Mean entropy of states in classical statistical mechanics
,”
Commun. Math. Phys.
5
,
288
300
(
1967
).
41.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
W. A. Benjamin Publisher
,
New York
,
1969
).
42.
D.
Ruelle
, “
Superstable interactions in classical statistical mechanics
,”
Commun. Math. Phys.
18
,
127
159
(
1970
).
43.
W.
Schommers
, “
A pair potential for liquid rubidium from the pair correlation function
,”
Phys. Lett. A
43
,
157
158
(
1973
).
44.
W.
Schommers
, “
Pair potentials in disordered many-particle systems: A study for liquid gallium
,”
Phys. Rev. A
28
,
3599
3605
(
1983
).
45.
M. S.
Shell
, “
The relative entropy is fundamental to multiscale and inverse thermodynamic problems
,”
J. Chem. Phys.
129
,
144108
(
2008
).
46.
A. K.
Soper
, “
Empirical potential Monte Carlo simulation of fluid structure
,”
Chem. Phys.
202
,
295
306
(
1996
).
47.
G.
Tóth
, “
Interactions from diffraction data: Historical and comprehensive overview of simulation assisted methods
,”
J. Phys.: Condens. Matter
19
,
335220
(
2007
).
48.
A.
Tsourtis
,
V.
Harmandaris
, and
D.
Tsagkarogiannis
, “
Parameterization of coarse-grained molecular interactions through potential of mean force calculations and cluster expansion techniques
,”
Entropy
19
,
395
(
2017
).
You do not currently have access to this content.