The movement of rods in an Euclidean space can be described as a field theory on a principal bundle. The dynamics of a rod is governed by partial differential equations that may have a variational origin. If the corresponding smooth Lagrangian density is invariant by some group of transformations, there exist the corresponding conserved Noether currents. Generally, numerical schemes dealing with PDEs fail to reflect these conservation properties. We describe the main ingredients needed to create, from the smooth Lagrangian density, a variational principle for discrete motions of a discrete rod, with the corresponding conserved Noether currents. We describe all geometrical objects in terms of elements on the linear Atiyah bundle using a reduced forward difference operator. We show how this introduces a discrete Lagrangian density that models the discrete dynamics of a discrete rod. The presented tools are general enough to represent a discretization of any variational theory in principal bundles, and its simplicity allows us to perform an iterative integration algorithm to compute the discrete rod evolution in time, starting from any predefined configurations of all discrete rod elements at initial times.

1.
P. A.
Absil
,
R.
Mahony
, and
R.
Sepulchre
,
Optimization Algorithms on Matrix Manifolds
(
Princeton University Press
,
2008
), p.
240
.
2.
R. L.
Adler
,
J. P.
Dedieu
,
J. Y.
Margulies
,
M.
Martens
, and
M.
Shub
, “
Newton’s method on Riemannian manifolds and a geometric model for the human spine
,”
IMA J. Numer. Anal.
22
(
3
),
359
390
(
2002
).
3.
S. S.
Antman
,
Nonlinear Problems of Elasticity
, Applied Mathematical Sciences (
Springer-Verlag
,
1994
), Vol. 107.
4.
M. F.
Atiyah
, “
Complex analytic connections in fibre bundles
,”
Trans. Am. Math. Soc.
85
,
181
207
(
1957
).
5.
A. I.
Bobenko
and
Yu.B.
Suris
, “
Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products
,”
Lett. Math. Phys.
49
(
1
),
79
93
(
1999
).
6.
A.
Cannas da Silva
and
A.
Weinstein
,
Geometric Models for Noncommutative Algebras
, Berkeley Mathematics Lecture Notes (
American Mathematical Society
,
1999
), Vol. 10, p.
184
.
7.
S.
Capriotti
, “
Differential geometry, Palatini gravity and reduction
,”
J. Math. Phys.
55
,
012902
(
2014
).
8.
A. C.
Casimiro
and
C.
Rodrigo
, “
First variation formula and conservation laws in several independent discrete variables
,”
J. Geom. Phys.
62
(
1
),
61
86
(
2012
).
9.
A. C.
Casimiro
and
C.
Rodrigo
, “
First variation formula for discrete variational problems in two independent variables
,”
RACSAM Rev. Real Acad. A
106
(
1
),
111
135
(
2012
).
10.
A. C.
Casimiro
and
C.
Rodrigo
, “
Reduction of Forward difference operators in principal G-bundles
,”
Stat. Optim. Inf. Comput.
6
,
42
85
(
2018
).
11.
A. C.
Casimiro
and
C.
Rodrigo
, “
Variational integrators for reduced field equations
,”
Stat. Optim. Inf. Comput.
6
,
86
115
(
2018
).
12.
M.
Castrillón López
, “
Field theories: Reduction, constraints and variational integrators
,”
RACSAM Rev. Real Acad. A
106
(
1
),
67
74
(
2012
).
13.
M.
Castrillón López
,
P.
Chacón
, and
P. L.
García
, “
Lagrange-Poincaré reduction in affine principal bundles
,”
J. Geom. Mech.
5
(
4
),
399
414
(
2013
).
14.
M.
Castrillón López
,
P. L.
García
, and
T. S.
Ratiu
, “
Euler-Poincaré reduction on principal bundles
,”
Lett. Math. Phys.
58
,
167
180
(
2001
).
15.
M.
Castrillón López
,
P. L.
García
, and
C.
Rodrigo
, “
Euler-Poincaré reduction in principal bundles by a subgroup of the structure group
,”
J. Geom. Phys.
74
,
352
369
(
2013
).
16.
S. H.
Christiansen
,
H. Z.
Munthe-Kaas
, and
B.
Owren
, “
Topics in structure-preserving discretization
,”
Acta Numer.
20
,
1
119
(
2011
).
17.
J.
Cortés
and
S.
Martínez
, “
Non-holonomic integrators
,”
Nonlinearity
14
,
1365
1392
(
2001
).
18.
F.
Demoures
,
F.
Gay-Balmaz
,
S.
Leyendecker
,
S.
Ober-Blöbaum
,
T. S.
Ratiu
, and
Y.
Weinand
, “
Discrete variational Lie group formulation of geometrically exact beam dynamics
,”
Numer. Math.
130
(
1
),
73
123
(
2015
).
19.
F.
Demoures
,
F.
Gay-Balmaz
, and
T. S.
Ratiu
, “
Multisymplectic variational integrators and space/time symplecticity
,”
Anal. Appl.
14
(
03
),
341
391
(
2016
).
20.
C.
Ehresmann
, “
Les connexions ifinitésimales dans un espace fibré différentiable
,” in
Colloque de Topologie
(
CBRM
,
Bruxelles
,
1950
), pp.
29–
55
.
21.
D. C. P.
Ellis
,
F.
Gay-Balmaz
,
D. D.
Holm
, and
T. S.
Ratiu
, “
Lagrange-Poincaré field equations
,”
J. Geom. Phys.
61
(
11
),
2120
2146
(
2011
).
22.
A.
Fernández
,
P. L.
García
, and
C.
Rodrigo
, “
Stress–energy–momentum tensors for natural constrained variational problems
,”
J. Geom. Phys.
49
(
1
),
1
20
(
2004
).
23.
A.
Fernández
,
P. L.
García
, and
C.
Rodrigo
, “
Variational integrators in discrete vakonomic mechanics
,”
RACSAM Rev. Real Acad. A
106
(
1
),
137
159
(
2012
).
24.
J.
Fernández
and
M.
Zuccalli
, “
A geometric approach to discrete connections on principal bundles
,”
J. Geom. Mech.
5
(
4
),
433
444
(
2013
).
25.
M.
Gasca
and
T.
Sauer
, “
Polynomial interpolation in several variables
,”
Adv. Comput. Math.
12
,
377
(
2000
).
26.
E. S.
Gawlik
,
P.
Mullen
,
D.
Pavlov
,
J. E.
Marsden
, and
M.
Desbrun
, “
Geometric, variational discretization of continuum theories
,”
Physica D
240
(
21
),
1724
1760
(
2011
).
27.
F.
Gay-Balmaz
,
T. S.
Ratiu
, and
C.
Tronci
, “
Equivalent theories of liquid crystal dynamics
,”
Arch. Ration. Mech. Anal.
210
(
3
),
773
811
(
2013
).
28.
H.
Goldschmidt
and
Sh.
Sternberg
, “
Differential geometry, the Hamilton-Cartan formalism in the Calculus of variations
,”
Ann. Inst. Fourier
23
(
1
),
203
267
(
1973
).
29.
H.-Y.
Guo
and
K.
Wu
, “
On variations in discrete mechanics and field theory
,”
J. Math. Phys.
44
(
12
),
5978
6004
(
2003
).
30.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
, Springer Series in Computational Mathematics (
Springer Verlag Berlin Heidelberg
,
New York
,
2004
), Vol. 31.
31.
A.
Iserles
,
H. Z.
Munthe-Kaas
,
S. P.
Nørsett
, and
A.
Zanna
, “
Lie-group methods
,”
Acta Numer.
9
,
215
365
(
2000
).
32.
M.
Kobilarov
, “
Solvability of geometric integrators for multi-body systems
,” in
Multibody Dynamics
(
Springer International Publishing
,
2014
), pp.
145
174
.
33.
M. B.
Kobilarov
and
J. E.
Marsden
, “
Discrete geometric optimal control on Lie groups
,”
IEEE Trans. Rob.
27
(
4
),
641
655
(
2011
).
34.
M.
Leok
,
J. E.
Marsden
, and
A. D.
Weinstein
, “
A discrete theory of connections on principal bundles
,” preprint arXiv:math/0508338 (
2005
).
35.
M.
Leok
and
T.
Shingel
, “
General techniques for constructing variational integrators
,”
Front. Math. China
7
(
2
),
273
303
(
2012
).
36.
M.
de León
,
D.
Martín de Diego
, and
A.
Santamaría Merino
, “
Geometric integrators and nonholonomic mechanics
,”
J. Math. Phys.
45
(
3
),
1042
1064
(
2004
).
37.
A.
Lew
,
J. E.
Marsden
,
M.
Ortiz
, and
M.
West
, “
Asynchronous variational integrators
,”
Arch. Rat. Mech. Anal.
167
,
85
146
(
2003
).
38.
J. E.
Marsden
,
S.
Pekarsky
, and
S.
Shkoller
, “
Symmetry reduction of discrete Lagrangian mechanics on Lie groups
,”
J. Geom. Phys.
36
(
1
),
140
151
(
2000
).
39.
J. E.
Marsden
and
M.
West
, “
Discrete mechanics and variational integrators
,”
Acta Numer.
10
,
357
514
(
2001
).
40.
R.
McLachlan
and
M.
Perlmutter
, “
Integrators for nonholonomic mechanical systems
,”
J. Nonlinear Sci.
16
(
4
),
283
328
(
2006
).
41.
R. I.
Mc Lachlan
and
G. R. W.
Quispel
, “
Geometric integrators for ODEs
,”
J. Phys. A: Math. Gen.
39
,
5251
5285
(
2006
).
42.
R. A.
Nicolaides
, “
On a class of finite elements generated by Lagrange interpolation
,”
SIAM J. Numer. Anal.
9
,
435
445
(
1972
).
43.
D. J.
Saunders
,
The Geometry of Jet bundles
, London Mathematical Society Lecture Note Series (
Cambridge University Press
,
1989
), Vol. 142.
44.
J.
Vankerschaver
, “
Euler-Poincaré reduction for discrete field theories
,”
J. Math. Phys.
48
(
3
),
032902
(
2007
).
45.
J.
Vankerschaver
and
F.
Cantrijn
, “
Discrete Lagrangian field theories on Lie groupoids
,”
J. Geom. Phys.
57
(
2
),
665
689
(
2007
).
46.
J.
Vankerschaver
,
C.
Liao
, and
M.
Leok
, “
Generating functionals and Lagrangian partial differential equations
,”
J. Math. Phys.
54
,
082901
(
2013
).
47.
J. M.
Wendlandt
and
J. E.
Marsden
, “
Mechanical integrators derived from a discrete variational principle
,”
Physica D
106
,
223
246
(
1997
).
You do not currently have access to this content.