Bondi-Metzner-Sachs (BMS) symmetries have been attracting a great deal of interest in recent years. Originally discovered as being the symmetries of asymptotically flat spacetime geometries at null infinity in general relativity, BMS symmetries have also been shown to exist for free field theories over Minkowski spacetime. In wanting to better understand their status and the underlying reasons for their existence, this work proposes a general rationale toward identifying all possible global symmetries of a free field theory over Minkowski spacetime, by allowing the corresponding conserved generators not to be necessarily spatially local in phase space. As a preliminary toward a separate study of the role of asymptotic states for BMS symmetries in an unbounded Minkowski spacetime, the present discussion focuses first onto a 2 + 1 dimensional free scalar field theory in a bounded spatial domain with the topology of a disk and an arbitrary radial Robin boundary condition. The complete set of global symmetries of that system, most of which are dynamical symmetries but include as well those generated by the local total energy and angular-momentum of the field, is thereby identified.

1.
H.
Bondi
,
M. G. J.
van der Burg
, and
A. W. K.
Metzner
,
Proc. Roy. Soc. London, Ser. A
269
,
21
(
1962
).
2.
R. K.
Sachs
,
Proc. R. Soc. A
270
,
103
(
1962
).
4.
S. W.
Hawking
,
M. J.
Perry
, and
A.
Strominger
,
Phys. Rev. Lett.
116
,
231301
(
2016
).
5.
A.
Strominger
,
Lectures on the Infrared Structure of Gravity and Gauge Theory
(
Princeton University Press
,
Princeton
,
2018
); e-print arXiv:1703.05448 [hep-th].
6.
G.
Compère
,
Advanced Lectures in General Relativity
, Lecture Notes in Physics (
Springer Nature Switzerland AG
,
2019
), Vol. 952; e-print arXiv:1801.07064 [hep-th].
G.
Compère
,
J.
Long
and
M.
Riegler
,
J. High Energy Phys.
2019
,
53
(
2019
); e-print arXiv:1903.01812 [hep-th].
G.
Compère
,
Phys. Rev. Lett.
123
,
021101
(
2019
).
7.
G.
Longhi
and
M.
Materassi
,
J. Math. Phys.
40
,
480
(
1999
);
G.
Longhi
and
M.
Materassi
,
Int. J. Mod. Phys. A
14
,
3387
(
1999
).
8.
V.
Lysov
,
S.
Pasterski
, and
A.
Strominger
,
Phys. Rev. Lett.
113
,
111601
(
2014
).
9.
C.
Battle
,
V.
Campello
, and
J.
Gomis
,
Phys. Rev. D
96
,
025004
(
2017
), and references therein.
10.
G.
Buldgen
, “
From Maxwell-Chern-Simons theory to the BMS3 symmetry group
,” M.S. thesis,
Université catholique de Louvain (UCLouvain, Louvain-la-Neuve)
(unpublished).
11.
T.
Andrade
and
D.
Marolf
,
Classical Quantum Gravity
33
,
015013
(
2015
).
12.
W.
Donnelly
and
L.
Freidel
,
J. High Energy Phys.
2016
,
102
.
13.
J.
Govaerts
,
Hamiltonian Quantisation and Constrained Dynamics
(
Leuven University Press
,
Leuven
,
1991
).
14.
A.
Elbert
and
P. D.
Siafarikas
,
J. Math. Anal. Appl.
164
,
21
33
(
1992
).
15.
L. J.
Landau
,
J. Math. Anal. Appl.
240
,
174
204
(
1999
).
16.
J.
Govaerts
,
J. Phys.: Conf. Ser.
1208
,
012011
(
2019
).
You do not currently have access to this content.