We extend the key notion of Martin-Löf randomness for infinite bit sequences to the quantum setting, where the sequences become states of an infinite dimensional system. We prove that our definition naturally extends the classical case. In analogy with the Levin-Schnorr theorem, we work toward characterizing quantum ML-randomness of states by incompressibility (in the sense of quantum Turing machines) of all initial segments.
REFERENCES
1.
J.
Bausch
, T.
Cubitt
, A.
Lucia
, D.
Perez-Garcia
, and M.
Wolf
, “Size-driven quantum phase transitions
,” Proc. Natl. Acad. Sci. U. S. A.
115
(1
), 19
–23
(2018
).2.
F.
Benatti
, S.
Oskouei
, and A.
Deh Abad
, “Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces
,” J. Math. Phys.
55
(8
), 082205
(2014
).3.
E.
Bernstein
and U.
Vazirani
, “Quantum complexity theory
,” SIAM J. Comput.
26
(5
), 1411
–1473
(1997
).4.
A.
Berthiaume
, W.
Van Dam
, and S.
Laplante
, “Quantum Kolmogorov complexity
,” in 2000 Proceedings 15th Annual IEEE Conference on Computational Complexity
(IEEE
, 2000
), pp. 240
–249
.5.
L.
Bienvenu
, W.
Merkle
, and A.
Shen
, “A simple proof of the Miller-Yu theorem
,” Fundam. Inf.
83
(1-2
), 21
–24
(2008
).6.
I.
Bjelaković
, T.
Krüger
, R.
Siegmund-Schultze
, and A.
Szkoła
, “The Shannon-McMillan theorem for ergodic quantum lattice systems
,” Invent. Math.
155
(1
), 203
–222
(2004
).7.
O.
Bratteli
and D.
Robinson
, Operator Algebras and Quantum Statistical Mechanics: Volume 1: C*-and W*-Algebras. Symmetry groups. Decomposition of States
(Springer Science & Business Media
, 2012
), First edition 1979.8.
T.
Cubitt
, D.
Perez-Garcia
, and M.
Wolf
, “Undecidability of the spectral gap
,” Nature
528
(7581
), 207
–211
(2015
); e-print arXiv:1502.04573.9.
R.
Downey
and D.
Hirschfeldt
, Algorithmic Randomness and Complexity
(Springer-Verlag
, Berlin
, 2010
).10.
11.
R.
Furber
, Projections in CAR (canonical anticommutation relation) algebra, MathOverflow. URL: https://mathoverflow.net/q/334640, version: 2019-06-24.12.
P.
Gács
, “Exact expressions for some randomness tests
,” Z. Math. Logik Grundlag. Math.
26
(5
), 385
–394
(1980
).13.
P.
Gács
, “Quantum algorithmic entropy
,” in 2001 16th Annual IEEE Conference on Computational Complexity
(IEEE
, 2001
), pp. 274
–283
.14.
M.
Hochman
, “Upcrossing inequalities for stationary sequences and applications
,” Ann. Probab.
37
(6
), 2135
–2149
(2009
).15.
M.
Hoyrup
, “The dimension of ergodic random sequences
,” in STACS
, edited by C.
Dürr
and T.
Wilke
(Springer
, 2012
), pp. 567
–576
.16.
L.
Levin
, “Laws of information conservation (nongrowth) and aspects of the foundation of probability theory
,” Problemy Peredachi Informatsii
10
(3
), 30
–35
(1974
).17.
P.
Martin-Löf
, “The definition of random sequences
,” Inf. Control
9
, 602
–619
(1966
).18.
J.
Miller
and L.
Yu
, “On initial segment complexity and degrees of randomness
,” Trans. Am. Math. Soc.
360
, 3193
–3210
(2008
).19.
A.
Molina
and J.
Watrous
, “Revisiting the simulation of quantum turing machines by quantum circuits
,” Proc. R. Soc. A
475
(2226
), 20180767
(2019
).20.
B.
Monin
and A.
Nies
, “A unifying approach to the Gamma question
,” in Proceedings of Logic in Computer Science (LICS)
(IEEE Press
, 2015
).21.
B.
Monin
and A.
Nies
, “Muchnik degrees and cardinal characteristics
,” preprint arXiv:1712.00864 (2017
).22.
M.
Müller
, “Quantum Kolmogorov complexity and the quantum Turing machine
,” Ph.D. thesis, University of Berlin
, 2007
; e-print arXiv:0712.4377.23.
S.
Nandakumar
, “An effective ergodic theorem and some applications
,” in Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing
(ACM
, 2008
), pp. 39
–44
.24.
25.
A.
Nies
, Computability and Randomness
, Volume 51 of Oxford Logic Guides (Oxford University Press
, Oxford
, 2009
), p. 444
, paperback version 2011.26.
27.
N.
Pathak
, C.
Rojas
, and S. G.
Simpson
, “Schnorr randomness and the Lebesgue differentiation theorem
,” Proc. Am. Math. Soc.
142
(1
), 335
–349
(2014
).28.
C. P.
Schnorr
, “A unified approach to the definition of random sequences
,” Math. Syst. Theory
5
(3
), 246
–258
(1971
).29.
P.
Shields
, The Ergodic Theory of Discrete Sample Paths
, Graduate Studies in Mathematics Vol. 13 (American Mathematical Society
, 1996
).30.
U.
Vazirani
, “A survey of quantum complexity theory
,” in Proc. Symp. Appl. Math.
58
, 193
–217
(2002
).31.
C.
Westergaard
, Computational Equivalence between Quantum Turing Machines and Quantum Circuit Families
(University of Copenhagen
, Denmark
, 2005
), available on Semantic Scholar.32.
A.
Yao
, “Quantum circuit complexity
,” in Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science
(IEEE
, 1993
), pp. 352
–361
.© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.