We study a system of N interacting fermions at positive temperature in a confining potential. In the regime where the intensity of the interaction scales as 1/N and with an effective semiclassical parameter = N−1/d where d is the space dimension, we prove the convergence to the corresponding Thomas-Fermi model at positive temperature.

1.
G. L.
Aki
,
P. A.
Markowich
, and
C.
Sparber
, “
Classical limit for semirelativistic Hartree systems
,”
J. Math. Phys.
49
,
102110
(
2008
).
2.
V.
Bach
,
S.
Breteaux
,
S.
Petrat
,
P.
Pickl
, and
T.
Tzaneteas
, “
Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction
,”
J. Math. Pures Appl.
105
,
1
30
(
2015
).
3.
V.
Bach
,
E. H.
Lieb
, and
J. P.
Solovej
, “
Generalized Hartree-Fock theory and the Hubbard model
,”
J. Stat. Phys.
76
,
3
89
(
1994
).
4.
C.
Bardos
,
F.
Golse
,
A. D.
Gottlieb
, and
N. J.
Mauser
, “
Mean field dynamics of fermions and the time-dependent Hartree-Fock equation
,”
J. Math. Pures Appl. (9)
82
,
665
683
(
2003
).
5.
M.
Barranco
and
J.-R.
Buchler
, “
Equation of state of hot, dense stellar matter: Finite temperature nuclear Thomas-Fermi approach
,”
Phys. Rev. C
24
,
1191
1202
(
1981
).
6.
N.
Benedikter
,
V.
Jaksic
,
M.
Porta
,
C.
Saffirio
, and
B.
Schlein
, “
Mean-field evolution of fermionic mixed states
,”
Commun. Pure Appl. Math.
69
,
2250
2303
(
2016
).
7.
N.
Benedikter
,
P. T.
Nam
,
M.
Porta
,
B.
Schlein
, and
R.
Seiringer
, “
Optimal upper bound for the correlation energy of a Fermi gas in the mean-field regime
,”
Commun. Math. Phys.
(published online).
8.
N.
Benedikter
,
M.
Porta
,
C.
Saffirio
, and
B.
Schlein
, “
From the Hartree dynamics to the Vlasov equation
,”
Arch. Ration. Mech. Anal.
221
,
273
334
(
2016
).
9.
N.
Benedikter
,
M.
Porta
, and
B.
Schlein
, “
Mean-field dynamics of fermions with relativistic dispersion
,”
J. Math. Phys.
55
,
021901
(
2014
).
10.
N.
Benedikter
,
M.
Porta
, and
B.
Schlein
, “
Mean-field evolution of fermionic systems
,”
Commun. Math. Phys.
331
,
1087
1131
(
2014
).
11.
L. G.
Brown
and
H.
Kosaki
, “
Jensen’s inequality in semi-finite von Neumann algebras
,”
J. Oper. Theory
23
,
3
19
(
1990
), available at https://www.jstor.org/stable/24714523.
12.
K. A.
Brueckner
,
J. R.
Buchler
,
S.
Jorna
, and
R. J.
Lombard
, “
Statistical theory of nuclei
,”
Phys. Rev.
171
,
1188
1195
(
1968
).
13.
R. D.
Cowan
and
J.
Ashkin
, “
Extension of the Thomas-Fermi-Dirac statistical theory of the atom to finite temperatures
,”
Phys. Rev.
105
,
144
157
(
1957
).
14.
H. L.
Cycon
,
R. G.
Froese
,
W.
Kirsch
, and
B.
Simon
,
Schrödinger Operators with Application to Quantum Mechanics and Global Geometry
, Texts and Monographs in Physics, Study edtuion (
Springer-Verlag
,
Berlin
,
1987
).
15.
E.
Dietler
,
S.
Rademacher
, and
B.
Schlein
, “
From Hartree dynamics to the relativistic Vlasov equation
,”
J. Stat. Phys.
172
,
398
433
(
2018
).
16.
A.
Elgart
,
L.
Erdős
,
B.
Schlein
, and
H.-T.
Yau
, “
Nonlinear Hartree equation as the mean field limit of weakly coupled fermions
,”
J. Math. Pures Appl.
83
,
1241
1273
(
2004
).
17.
R. P.
Feynman
,
N.
Metropolis
, and
E.
Teller
, “
Equations of state of elements based on the generalized Fermi-Thomas theory
,”
Phys. Rev.
75
,
1561
1573
(
1949
).
18.
S.
Fournais
,
M.
Lewin
, and
J. P.
Solovej
, “
The semi-classical limit of large fermionic systems
,”
Calc. Var. Partial Differ. Equations
57
,
105
(
2018
).
19.
J.
Fröhlich
and
A.
Knowles
, “
A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction
,”
J. Stat. Phys.
145
,
23
50
(
2011
).
20.
J. J.
Gilvarry
and
G. H.
Peebles
, “
Solutions of the temperature-perturbed Thomas-Fermi equation
,”
Phys. Rev.
99
,
550
552
(
1955
).
21.
S.
Giorgini
,
L. P.
Pitaevsk
 II
, and
S.
Stringari
, “
Theory of ultracold atomic Fermi gases
,”
Rev. Mod. Phys.
80
,
1215
1274
(
2008
).
22.
F.
Golse
,
C.
Mouhot
, and
T.
Paul
, “
On the mean field and classical limits of quantum mechanics
,”
Commun. Math. Phys.
343
,
165
205
(
2016
).
23.
F.
Golse
and
T.
Paul
, “
The Schrödinger equation in the mean-field and semiclassical regime
,”
Arch. Ration. Mech. Anal.
223
,
57
94
(
2017
).
24.
A. D.
Gottlieb
, “
Examples of Bosonic de Finetti states over finite dimensional Hilbert spaces
,”
J. Stat. Phys.
121
,
497
509
(
2005
).
25.
A.
Grabsch
,
S. N.
Majumdar
,
G.
Schehr
, and
C.
Texier
, “
Fluctuations of observables for free fermions in a harmonic trap at finite temperature
,”
SciPost Phys.
4
,
14
(
2018
).
26.
C.
Hainzl
,
M.
Porta
, and
F.
Rexze
, “
On the correlation energy of the mean-field Fermi gas
,” e-print arXiv:1806.11411 (
2018
).
27.
B.
Hauksson
and
J.
Yngvason
, “
Asymptotic exactness of magnetic Thomas-Fermi theory at nonzero temperature
,”
J. Stat. Phys.
116
,
523
546
(
2004
).
28.
P.
Hertel
,
H.
Narnhofer
, and
W.
Thirring
, “
Thermodynamic functions for fermions with gravostatic and electrostatic interactions
,”
Commun. Math. Phys.
28
,
159
176
(
1972
).
29.
P.
Hertel
and
W.
Thirring
, “
Free energy of gravitating fermions
,”
Commun. Math. Phys.
24
,
22
36
(
1971
).
30.
R.
Latter
, “
Temperature behavior of the Thomas-Fermi statistical model for atoms
,”
Phys. Rev.
99
,
1854
1870
(
1955
).
31.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
Derivation of Hartree’s theory for generic mean-field Bose systems
,”
Adv. Math.
254
,
570
621
(
2014
).
32.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
Bose gases at positive temperature and non-linear Gibbs measures
,” in
Proceedings of the International Congress of Mathematical Physics
,
2015
; e-print arXiv:1602.05166 (
2016
).
33.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
Derivation of nonlinear Gibbs measures from many-body quantum mechanics
,”
J. l’École polytech. Math.
2
,
65
115
(
2015
).
34.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
Classical field theory limit of 2D many-body quantum Gibbs states
,” e-print arXiv:1810.08370 (
2018
).
35.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits
,”
J. Math. Phys.
59
,
041901
(
2018
).
36.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
The interacting 2D Bose gas and nonlinear Gibbs measures
,” in
Gibbs Measures for Nonlinear Dispersive Equations
, edited by
B. S.
Giuseppe Genovese
and
V.
Sohinger
(
Oberwolfach Mini-Workshop
,
2018
).
37.
M.
Lewin
,
P. T.
Nam
,
S.
Serfaty
, and
J. P.
Solovej
, “
Bogoliubov spectrum of interacting Bose gases
,”
Commun. Pure Appl. Math.
68
,
413
471
(
2015
).
38.
E. H.
Lieb
and
M.
Loss
,
Analysis
, Graduate Studies in Mathematics Vol. 14, 2nd ed. (
American Mathematical Society
,
Providence, RI
,
2001
).
39.
E. H.
Lieb
,
R.
Seiringer
, and
J. P.
Solovej
, “
Ground-state energy of the low-density Fermi gas
,”
Phys. Rev. A
71
,
053605
(
2005
).
40.
E. H.
Lieb
and
B.
Simon
, “
The Hartree-Fock theory for Coulomb systems
,”
Commun. Math. Phys.
53
,
185
194
(
1977
).
41.
E. H.
Lieb
and
B.
Simon
, “
The Thomas-Fermi theory of atoms, molecules and solids
,”
Adv. Math.
23
,
22
116
(
1977
).
42.
E. H.
Lieb
and
W. E.
Thirring
, “
Bound on kinetic energy of fermions which proves stability of matter
,”
Phys. Rev. Lett.
35
,
687
689
(
1975
).
43.
E. H.
Lieb
and
W. E.
Thirring
, “
Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities
,” in
Studies in Mathematical Physics
(
Princeton University Press
,
1976
), pp.
269
303
.
44.
E. H.
Lieb
and
W. E.
Thirring
, “
Gravitational collapse in quantum mechanics with relativistic kinetic energy
,”
Ann. Phys.
155
,
494
512
(
1984
).
45.
E. H.
Lieb
and
H.-T.
Yau
, “
The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics
,”
Commun. Math. Phys.
112
,
147
174
(
1987
).
46.
P. S.
Madsen
, Ph.D. thesis,
Aarhus University
,
2019
.
47.
N. H.
March
, “
Equations of state of elements from the Thomas-Fermi theory II: Case of incomplete degeneracy
,”
Proc. Phys. Soc.
68
,
1145
(
1955
).
48.
R. E.
Marshak
and
H. A.
Bethe
, “
The generalized Thomas-Fermi method as applied to stars
,”
Astrophys. J.
91
,
239
(
1940
).
49.
J.
Messer
, “
Nonmonotonicity of the mass distribution and existence of the gravitational phase transition
,”
Phys. Lett. A
83
,
304
306
(
1981
).
50.
J.
Messer
, “
On the gravitational phase transition in the Thomas-Fermi model
,”
J. Math. Phys.
22
,
2910
2917
(
1981
).
51.
J.
Messer
,
Temperature Dependent Thomas-Fermi theory
, Lecture Notes in Physics Vol. 147 (
Springer-Verlag
,
Berlin-New York
,
1981
).
52.
H.
Narnhofer
and
G.
Sewell
, “
Vlasov hydrodynamics of a quantum mechanical model
,”
Commun. Math. Phys.
79
,
9
24
(
1981
).
53.
H.
Narnhofer
and
W.
Thirring
, “
Asymptotic exactness of finite temperature Thomas-Fermi theory
,”
Ann. Phys.
134
,
128
140
(
1981
).
54.
S.
Petrat
and
P.
Pickl
, “
A new method and a new scaling for deriving fermionic mean-field dynamics
,”
Math. Phys. Anal. Geom.
19
,
3
(
2016
).
55.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. I. Functional Analysis
(
Academic Press
,
1972
).
56.
D. W.
Robinson
,
The Thermodynamic Pressure in Quantum Statistical Mechanics
, Lecture Notes in Physics Vol. 9 (
Springer-Verlag
,
Berlin, New York
,
1971
).
57.
N.
Rougerie
, “
De Finetti theorems, mean-field limits and Bose-Einstein condensation
,” e-print arXiv:1506.05263 (
2015
).
58.
D.
Ruelle
,
Statistical Mechanics. Rigorous Results
(
World Scientific
,
Singapore
;
Imperial College Press
,
London
,
1999
).
59.
K.
Schönhammer
, “
Deviations from Wick’s theorem in the canonical ensemble
,”
Phys. Rev. A
96
,
012102
(
2017
).
60.
R.
Seiringer
, “
The thermodynamic pressure of a dilute Fermi gas
,”
Commun. Math. Phys.
261
,
729
757
(
2006
).
61.
B.
Simon
, “
The classical limit of quantum partition functions
,”
Commun. Math. Phys.
71
,
247
276
(
1980
).
62.
H.
Spohn
, “
On the Vlasov hierarchy
,”
Math. Methods Appl. Sci.
3
,
445
455
(
1981
).
63.
W. E.
Thirring
,
Quantum Mathematical Physics: Atoms, Molecules and Large Systems
, 2nd ed. (
Springer
,
2002
).
64.
A.
Triay
, “
Mean-field limits in quantum mechanics
,” Ph.D. thesis,
University of Paris-Dauphine
,
2019
.
65.
53 works under the condition that w^(p)a|p|a for some a > 0 for large p. Not all interaction potentials can, therefore, be covered.
You do not currently have access to this content.