We study self-similar solutions of the binormal curvature flow which governs the evolution of vortex filaments and is equivalent to the Landau-Lifshitz equation. The corresponding dynamics is described by the real solutions of the σ-Painlevé IV equation with two real parameters. Connection formulae for Painlevé IV transcendents allow for a complete characterization of the asymptotic properties of the curvature and torsion of the filament. We also provide compact hypergeometric expressions for self-similar solutions corresponding to corner initial conditions.

1.
R. J.
Arms
and
F. R.
Hama
, “
Localized-induction concept on a curved vortex and motion of an elliptic vortex ring
,”
Phys. Fluids
8
,
553
559
(
1965
).
2.
M. J.
Ablowitz
and
H.
Segur
, “
Asymptotic solutions of the Korteweg-de Vries equation
,”
Stud. Appl. Math.
57
,
13
44
(
1977
).
3.
V.
Banica
and
L.
Vega
, “
The initial value problem for the binormal flow with rough data
,”
Ann. Sci. Ec. Norm. Super.
48
,
1423
1455
(
2015
); e-print arXiv:1304.0996 [math.AP].
4.
A. P.
Bassom
,
P. A.
Clarkson
,
A. C.
Hicks
, and
J. B.
McLeod
, “
Integral solutions and exact solutions for the fourth Painlevé equation
,”
Proc. R. Soc. A
437
,
1
24
(
1992
).
5.
R.
Betchov
, “
On the curvature and torsion of an isolated vortex filament
,”
J. Fluid Mech.
22
,
471
479
(
1965
).
6.
M.
Boiti
and
F.
Pempinelli
, “
Nonlinear Schrödinger equation, Bäcklund transformations and Painlevé transcendents
,”
Il Nuovo Cimento B
59
,
40
58
(
1980
).
7.
G.
Bonelli
,
O.
Lisovyy
,
K.
Maruyoshi
,
A.
Sciarappa
, and
A.
Tanzini
, “
On Painlevé/gauge theory correspondence
,”
Lett. Math. Phys.
107
,
2359
2413
(
2017
); e-print arXiv:1612.06235 [hep-th].
8.
M.
Can
, “
On the relations between nonlinear Schrödinger equation and Painlevé IV equation
,”
Il Nuovo Cimento B
106
,
205
207
(
1991
).
9.
P.
Clarkson
, “
The fourth Painlevé equation
,” in
Differential Algebra and Related Topics
, edited by
L.
Guo
and
W. Y.
Sit
(
World Scientific
,
Singapore
,
2008
); https://kar.kent.ac.uk/23090/.
10.
L. S.
Da Rios
, “
On the motion of an unbounded fluid with a vortex filament of any shape
,”
Rend. Circ. Mat. Palermo
22
,
117
135
(
1906
).
11.
P. A.
Deift
,
A. R.
Its
, and
X.
Zhou
, “
Long-time asymptotics for integrable nonlinear wave equations
,” in
Important Developments in Soliton Theory
, edited by
A. S.
Fokas
and
V. E.
Zakharov
(
Springer
,
Berlin, Heidelberg
,
1993
), pp.
181
204
.
12.
G. V.
Dunne
, “
Resurgence, Painlevé equations and conformal blocks
,”
J. Phys. A: Math. Theor.
(published online); e-print arXiv:1901.02076v1 [hep-th].
13.
A. S.
Fokas
,
A. R.
Its
,
A. A.
Kapaev
, and
V. Y.
Novokshenov
,
Painlevé Transcendents: The Riemann-Hilbert Approach
, Mathematical Surveys and Monographs Vol. 128 (
AMS
,
Providence, RI
,
2006
).
14.
O.
Gamayun
,
N.
Iorgov
, and
O.
Lisovyy
, “
Conformal field theory of Painlevé VI
,”
J. High Energy Phys.
2012
,
38
; e-print arXiv:1207.0787 [hep-th].
15.
O.
Gamayun
,
N.
Iorgov
,
O.
Lisovyy
, “
How instanton combinatorics solves Painlevé VI, V and III’s
,”
J. Phys. A: Math. Gen.
46
,
335203
(
2013
); e-print arXiv:1302.1832 [hep-th].
16.
O.
Gamayun
,
Y.
Miao
, and
E.
Ilievski
, “
Domain wall dynamics in the Landau–Lifshitz magnet and the classical-quantum correspondence of spin transport
,”
Phys, Rev. B
99
,
140301
(
2019
).
17.
S.
Gutiérrez
,
J.
Rivas
, and
L.
Vega
, “
Formation of singularities and self-similar vortex motion under the localized induction approximation
,”
Commun. Part. Differ. Equations
28
(
5–6
),
927
968
(
2003
).
18.
S.
Gutiérrez
and
L.
Vega
, “
Self-similar solutions of the localized induction approximation: Singularity formation
,”
Nonlinearity
17
,
2091
2136
(
2004
); e-print arXiv:math/0404291 [math.AP].
19.
S.
Gutiérrez
, and
L.
Vega
, “
On the stability of self-similar solutions of 1D cubic Schrödinger equations
,”
Math. Ann.
356
,
259
300
(
2013
); e-print arXiv:1103.5403 [math.AP].
20.
H.
Hasimoto
, “
A soliton on a vortex filament
,”
J. Fluid Mech.
51
,
477
485
(
1972
).
21.
A. R.
Its
and
A. A.
Kapaev
, “
Connection formulae for the fourth Painlevé transcendent: Clarkson-McLeod solution
,”
J. Phys. A: Gen. Phys.
31
,
4073
4113
(
1998
).
22.
A.
Its
,
O.
Lisovyy
, and
Yu.
Tykhyy
, “
Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks
,”
Int. Math. Res. Not.
2015
(
18
),
8903
8924
; e-print arXiv:1403.1235 [math-ph].
23.
M.
Jimbo
,
T.
Miwa
, and
K.
Ueno
, “
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. General theory and τ-function
,”
Physica D
2
,
306
352
(
1981
).
24.
M.
Jimbo
and
T.
Miwa
, “
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II
,”
Physica D
2
,
407
448
(
1981
).
25.
A. A.
Kapaev
, “
Global asymptotics of the fourth Painlevé transcendent
,” Steklov Math. Inst. and IUPUI Preprint 6/1996, ftp://ftp.pdmi.ras.ru/pub/publicat/preprint/1996/06-96.ps.gz.
26.
A. A.
Kapaev
, “
Connection formulae for degenerated asymptotic solutions of the fourth Painlevé equation
,” e-print arXiv:solv-int/9805011.
27.
A. V.
Kitaev
, “
Asymptotic description of the fourth Painlevé equation solutions on the Stokes rays analogies
,”
Zap. Nauchn. Sem. LOMI
169
,
84
90
(
1988
).
28.
M.
Lakshmanan
,
T. W.
Ruijrok
, and
C. J.
Thompson
, “
On the dynamics of a continuum spin system
,”
Physica A
84
,
577
590
(
1976
).
29.
T.
Lipniacki
, “
Shape-preserving solutions for quantum vortex motion under localized induction approximation
,”
Phys. Fluids
15
(
6
),
1381
1395
(
2003
).
30.
T.
Lipniacki
, “
Quasi-static solutions for quantum vortex motion under the localized induction approximation
,”
J. Fluid Mech.
477
,
321
337
(
2003
).
31.
H.
Nagoya
, “
Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations
,”
J. Math. Phys.
56
,
123505
(
2015
); e-print arXiv:1505.02398 [math-ph].
32.
H.
Nagoya
, “
Conformal blocks and Painlevé functions
,” e-print arXiv:1611.08971 [math-ph].
33.
G. R. W.
Quispel
and
H. W.
Capel
, “
Equation of motion for the Heisenberg spin chain
,”
Phys. Lett. A
85
(
4
),
248
250
(
1981
).
34.
R. L.
Ricca
, “
Rediscovery of Da Rios equations
,”
Nature
352
,
561
562
(
1991
).
You do not currently have access to this content.