We study self-similar solutions of the binormal curvature flow which governs the evolution of vortex filaments and is equivalent to the Landau-Lifshitz equation. The corresponding dynamics is described by the real solutions of the σ-Painlevé IV equation with two real parameters. Connection formulae for Painlevé IV transcendents allow for a complete characterization of the asymptotic properties of the curvature and torsion of the filament. We also provide compact hypergeometric expressions for self-similar solutions corresponding to corner initial conditions.
REFERENCES
1.
R. J.
Arms
and F. R.
Hama
, “Localized-induction concept on a curved vortex and motion of an elliptic vortex ring
,” Phys. Fluids
8
, 553
–559
(1965
).2.
M. J.
Ablowitz
and H.
Segur
, “Asymptotic solutions of the Korteweg-de Vries equation
,” Stud. Appl. Math.
57
, 13
–44
(1977
).3.
V.
Banica
and L.
Vega
, “The initial value problem for the binormal flow with rough data
,” Ann. Sci. Ec. Norm. Super.
48
, 1423
–1455
(2015
); e-print arXiv:1304.0996 [math.AP].4.
A. P.
Bassom
, P. A.
Clarkson
, A. C.
Hicks
, and J. B.
McLeod
, “Integral solutions and exact solutions for the fourth Painlevé equation
,” Proc. R. Soc. A
437
, 1
–24
(1992
).5.
R.
Betchov
, “On the curvature and torsion of an isolated vortex filament
,” J. Fluid Mech.
22
, 471
–479
(1965
).6.
M.
Boiti
and F.
Pempinelli
, “Nonlinear Schrödinger equation, Bäcklund transformations and Painlevé transcendents
,” Il Nuovo Cimento B
59
, 40
–58
(1980
).7.
G.
Bonelli
, O.
Lisovyy
, K.
Maruyoshi
, A.
Sciarappa
, and A.
Tanzini
, “On Painlevé/gauge theory correspondence
,” Lett. Math. Phys.
107
, 2359
–2413
(2017
); e-print arXiv:1612.06235 [hep-th].8.
M.
Can
, “On the relations between nonlinear Schrödinger equation and Painlevé IV equation
,” Il Nuovo Cimento B
106
, 205
–207
(1991
).9.
P.
Clarkson
, “The fourth Painlevé equation
,” in Differential Algebra and Related Topics
, edited by L.
Guo
and W. Y.
Sit
(World Scientific
, Singapore
, 2008
); https://kar.kent.ac.uk/23090/.10.
L. S.
Da Rios
, “On the motion of an unbounded fluid with a vortex filament of any shape
,” Rend. Circ. Mat. Palermo
22
, 117
–135
(1906
).11.
P. A.
Deift
, A. R.
Its
, and X.
Zhou
, “Long-time asymptotics for integrable nonlinear wave equations
,” in Important Developments in Soliton Theory
, edited by A. S.
Fokas
and V. E.
Zakharov
(Springer
, Berlin, Heidelberg
, 1993
), pp. 181
–204
.12.
G. V.
Dunne
, “Resurgence, Painlevé equations and conformal blocks
,” J. Phys. A: Math. Theor.
(published online); e-print arXiv:1901.02076v1 [hep-th].13.
A. S.
Fokas
, A. R.
Its
, A. A.
Kapaev
, and V. Y.
Novokshenov
, Painlevé Transcendents: The Riemann-Hilbert Approach
, Mathematical Surveys and Monographs Vol. 128 (AMS
, Providence, RI
, 2006
).14.
O.
Gamayun
, N.
Iorgov
, and O.
Lisovyy
, “Conformal field theory of Painlevé VI
,” J. High Energy Phys.
2012
, 38
; e-print arXiv:1207.0787 [hep-th].15.
O.
Gamayun
, N.
Iorgov
, O.
Lisovyy
, “How instanton combinatorics solves Painlevé VI, V and III’s
,” J. Phys. A: Math. Gen.
46
, 335203
(2013
); e-print arXiv:1302.1832 [hep-th].16.
O.
Gamayun
, Y.
Miao
, and E.
Ilievski
, “Domain wall dynamics in the Landau–Lifshitz magnet and the classical-quantum correspondence of spin transport
,” Phys, Rev. B
99
, 140301
(2019
).17.
S.
Gutiérrez
, J.
Rivas
, and L.
Vega
, “Formation of singularities and self-similar vortex motion under the localized induction approximation
,” Commun. Part. Differ. Equations
28
(5–6
), 927
–968
(2003
).18.
S.
Gutiérrez
and L.
Vega
, “Self-similar solutions of the localized induction approximation: Singularity formation
,” Nonlinearity
17
, 2091
–2136
(2004
); e-print arXiv:math/0404291 [math.AP].19.
S.
Gutiérrez
, and L.
Vega
, “On the stability of self-similar solutions of 1D cubic Schrödinger equations
,” Math. Ann.
356
, 259
–300
(2013
); e-print arXiv:1103.5403 [math.AP].20.
H.
Hasimoto
, “A soliton on a vortex filament
,” J. Fluid Mech.
51
, 477
–485
(1972
).21.
A. R.
Its
and A. A.
Kapaev
, “Connection formulae for the fourth Painlevé transcendent: Clarkson-McLeod solution
,” J. Phys. A: Gen. Phys.
31
, 4073
–4113
(1998
).22.
A.
Its
, O.
Lisovyy
, and Yu.
Tykhyy
, “Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks
,” Int. Math. Res. Not.
2015
(18
), 8903
–8924
; e-print arXiv:1403.1235 [math-ph].23.
M.
Jimbo
, T.
Miwa
, and K.
Ueno
, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients I. General theory and τ-function
,” Physica D
2
, 306
–352
(1981
).24.
M.
Jimbo
and T.
Miwa
, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II
,” Physica D
2
, 407
–448
(1981
).25.
A. A.
Kapaev
, “Global asymptotics of the fourth Painlevé transcendent
,” Steklov Math. Inst. and IUPUI Preprint 6/1996, ftp://ftp.pdmi.ras.ru/pub/publicat/preprint/1996/06-96.ps.gz.26.
A. A.
Kapaev
, “Connection formulae for degenerated asymptotic solutions of the fourth Painlevé equation
,” e-print arXiv:solv-int/9805011.27.
A. V.
Kitaev
, “Asymptotic description of the fourth Painlevé equation solutions on the Stokes rays analogies
,” Zap. Nauchn. Sem. LOMI
169
, 84
–90
(1988
).28.
M.
Lakshmanan
, T. W.
Ruijrok
, and C. J.
Thompson
, “On the dynamics of a continuum spin system
,” Physica A
84
, 577
–590
(1976
).29.
T.
Lipniacki
, “Shape-preserving solutions for quantum vortex motion under localized induction approximation
,” Phys. Fluids
15
(6
), 1381
–1395
(2003
).30.
T.
Lipniacki
, “Quasi-static solutions for quantum vortex motion under the localized induction approximation
,” J. Fluid Mech.
477
, 321
–337
(2003
).31.
H.
Nagoya
, “Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations
,” J. Math. Phys.
56
, 123505
(2015
); e-print arXiv:1505.02398 [math-ph].32.
33.
G. R. W.
Quispel
and H. W.
Capel
, “Equation of motion for the Heisenberg spin chain
,” Phys. Lett. A
85
(4
), 248
–250
(1981
).34.
R. L.
Ricca
, “Rediscovery of Da Rios equations
,” Nature
352
, 561
–562
(1991
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.