We consider pairs of few-body Ising models where each spin enters a bounded number of interaction terms (bonds) such that each model can be obtained from the dual of the other after freezing k spins on large-degree sites. Such a pair of Ising models can be interpreted as a two-chain complex with k being the rank of the first homology group. Our focus is on the case where k is extensive, that is, scales linearly with the number of bonds n. Flipping any of these additional spins introduces a homologically nontrivial defect (generalized domain wall). In the presence of bond disorder, we prove the existence of a low-temperature weak-disorder region where additional summation over the defects has no effect on the free energy density f(T) in the thermodynamical limit and of a high-temperature region where an extensive homological defect does not affect f(T). We also discuss the convergence of the high- and low-temperature series for the free energy density, prove the analyticity of limiting f(T) at high and low temperatures, and construct inequalities for the critical point(s) where analyticity is lost. As an application, we prove multiplicity of the conventionally defined critical points for Ising models on all { f, d} tilings of the infinite hyperbolic plane, where df/(d + f) > 2. Namely, for these infinite graphs, we show that critical temperatures with free and wired boundary conditions differ, Tc(f)<Tc(w).

1.
R.
Griffiths
, “
Rigorous results and theorems
,” in
Phase Transitions and Critical Phenomena
, Exact results Vol. 1, edited by
C.
Domb
and
M. S.
Green
(
Academic Press
,
London
,
1972
), Chap. 2, pp.
7
109
.
2.
J. L.
Lebowitz
, “
Coexistence of phases in Ising ferromagnets
,”
J. Stat. Phys.
16
,
463
476
(
1977
).
3.
C.
Gruber
and
J. L.
Lebowitz
, “
On the equivalence of different order parameters and coexistence of phases for Ising ferromagnet. II
,”
Commun. Math. Phys.
59
,
97
108
(
1978
).
4.
J. L.
Lebowitz
and
C. E.
Pfister
, “
Surface tension and phase coexistence
,”
Phys. Rev. Lett.
46
,
1031
1033
(
1981
).
5.
R.
Lyons
, “
The Ising model and percolation on trees and tree-like graphs
,”
Commun. Math. Phys.
125
,
337
353
(
1989
).
6.
R.
Lyons
, “
Phase transitions on nonamenable graphs
,”
J. Math. Phys.
41
,
1099
1126
(
2000
); e-print arXiv:math/9908177.
7.
P.
Gerl
, “
Random walks on graphs with a strong isoperimetric property
,”
J. Theor. Probab.
1
,
171
187
(
1988
).
8.
R. M.
Burton
and
M.
Keane
, “
Density and uniqueness in percolation
,”
Commun. Math. Phys.
121
,
501
505
(
1989
).
9.
I.
Benjamini
and
O.
Schramm
, “
Percolation beyond Zd, many questions and a few answers
,”
Electron. Commun. Probab.
1
,
71
82
(
1996
).
10.
O.
Häggström
and
J.
Jonasson
, “
Uniqueness and non-uniqueness in percolation theory
,”
Probab. Surv.
3
,
289
344
(
2006
).
11.
I.
Benjamini
and
O.
Schramm
, “
Percolation in the hyperbolic plane
,”
J. Am. Math. Soc.
14
,
487
507
(
2001
).
12.
J.
Jonasson
and
J. E.
Steif
, “
Amenability and phase transition in the Ising model
,”
J. Theor. Probab.
12
,
549
559
(
1999
).
13.
C. M.
Fortuin
and
P. W.
Kasteleyn
, “
On the random-cluster model: I. Introduction and relation to other models
,”
Physica
57
,
536
564
(
1972
).
14.
C. M.
Fortuin
, “
On the random-cluster model: II. The percolation model
,”
Physica
58
,
393
418
(
1972
).
15.
H. R.
Schonmann
, “
Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs
,”
Commun. Math. Phys.
219
,
271
322
(
2001
).
16.
O.
Häggström
,
J.
Jonasson
, and
R.
Lyons
, “
Explicit isoperimetric constants and phase transitions in the random-cluster model
,”
Ann. Probab.
30
,
443
473
(
2002
).
17.
N. B.
Birrel
and
P. C. W.
Davies
,
Quantum Fields in Curved Space
(
Cambridge University Press
,
Cambridge, UK
,
1982
).
18.
G.
Cognola
,
K.
Kirsten
, and
S.
Zerbini
, “
One-loop effective potential on hyperbolic manifolds
,”
Phys. Rev. D
48
,
790
799
(
1993
).
19.
R.
Camporesi
, “
ζ-function regularization of one-loop effective potentials in anti-de Sitter spacetime
,”
Phys. Rev. D
43
,
3958
3965
(
1991
).
20.
G.
Miele
and
P.
Vitale
, “
Three-dimensional Gross-Neveu model on curved spaces
,”
Nucl. Phys. B
494
,
365
387
(
1997
).
21.
B.
Doyon
, “
Two-point correlation functions of scaling fields in the Dirac theory on the Poincaré disk
,”
Nucl. Phys. B
675
,
607
630
(
2003
).
22.
G.
Evenbly
and
G.
Vidal
, “
Tensor network states and geometry
,”
J. Stat. Phys.
145
,
891
918
(
2011
).
23.
H.
Matsueda
,
M.
Ishihara
, and
Y.
Hashizume
, “
Tensor network and a black hole
,”
Phys. Rev. D
87
,
066002
(
2013
).
24.
D. R.
Nelson
, “
Order, frustration, and defects in liquids and glasses
,”
Phys. Rev. B
28
,
5515
5535
(
1983
).
25.
G.
Tarjus
,
S. A.
Kivelson
,
Z.
Nussinov
, and
P.
Viot
, “
The frustration-based approach of supercooled liquids and the glass transition: A review and critical assessment
,”
J. Phys.: Condens. Matter
17
,
R1143
(
2005
).
26.
V.
Vitelli
,
J. B.
Lucks
, and
D. R.
Nelson
, “
Crystallography on curved surfaces
,”
Proc. Natl Acad. Sci. U. S. A.
103
,
12323
12328
(
2006
).
27.
F.
Sausset
and
G.
Tarjus
, “
Periodic boundary conditions on the pseudosphere
,”
J. Phys. A: Math. Theor.
40
,
12873
(
2007
).
28.
L.
Giomi
and
M.
Bowick
, “
Crystalline order on Riemannian manifolds with variable Gaussian curvature and boundary
,”
Phys. Rev. B
76
,
054106
(
2007
).
29.
A. M.
Turner
,
V.
Vitelli
, and
D. R.
Nelson
, “
Vortices on curved surfaces
,”
Rev. Mod. Phys.
82
,
1301
1348
(
2010
).
30.
N. A.
Garcia
,
A. D.
Pezzutti
,
R. A.
Register
,
D. A.
Vega
, and
L. R.
Gomez
, “
Defect formation and coarsening in hexagonal 2D curved crystals
,”
Soft Matter
11
,
898
907
(
2015
).
31.
D.
Benedetti
, “
Critical behavior in spherical and hyperbolic spaces
,”
J. Stat. Mech.: Theor. Exp.
2015
,
P01002
.
32.
R.
Cohen
,
K.
Erez
,
D.
ben-Avraham
, and
S.
Havlin
, “
Resilience of the internet to random breakdowns
,”
Phys. Rev. Lett.
85
,
4626
4628
(
2000
).
33.
R.
Albert
and
A.-L.
Barabási
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
34.
P.
Gai
and
S.
Kapadia
, “
Contagion in financial networks
,”
Proc. R. Soc. A
466
,
2401
2423
(
2010
).
35.
K.
Börner
,
S.
Sanyal
, and
A.
Vespignani
, “
Network science
,”
Annu. Rev. Inf. Sci. Technol.
41
,
537
607
(
2007
).
36.
L. M.
Sander
,
C. P.
Warren
,
I. M.
Sokolov
,
C.
Simon
, and
J.
Koopman
, “
Percolation on heterogeneous networks as a model for epidemics
,”
Math. Biosci.
180
,
293
305
(
2002
).
37.
L.
da Fontoura Costa
,
O. N.
Oliveira
,
G.
Travieso
,
F. A.
Rodrigues
,
P. R.
Villas Boas
,
L.
Antiqueira
,
M. P.
Viana
, and
L. E.
Correa Rocha
, “
Analyzing and modeling real-world phenomena with complex networks: A survey of applications
,”
Adv. Phys.
60
,
329
412
(
2011
).
38.
L.
Danon
,
A. P.
Ford
,
T.
House
,
C. P.
Jewell
,
M. J.
Keeling
,
G. O.
Roberts
,
J. V.
Ross
, and
M. C.
Vernon
, “
Networks and the epidemiology of infectious disease
,”
Interdiscip. Perspect. Infect. Dis.
2011
,
284909
.
39.
E.
Dennis
,
A.
Kitaev
,
A.
Landahl
, and
J.
Preskill
, “
Topological quantum memory
,”
J. Math. Phys.
43
,
4452
(
2002
).
40.
A. A.
Kovalev
and
L. P.
Pryadko
, “
Spin glass reflection of the decoding transition for quantum error-correcting codes
,”
Quantum Inf. Comput.
15
,
0825
(
2015
); e-print arXiv:1311.7688.
41.
A. A.
Kovalev
,
S.
Prabhakar
,
I.
Dumer
, and
L. P.
Pryadko
, “
Numerical and analytical bounds on threshold error rates for hypergraph-product codes
,”
Phys. Rev. A
97
,
062320
(
2018
); e-print arXiv:1804.01950.
42.
C. C.
Wu
, “
Ising models on hyperbolic graphs II
,”
J. Stat. Phys.
100
,
893
904
(
2000
).
43.
F. J.
Wegner
, “
Duality in generalized Ising models and phase transitions without local order parameters
,”
J. Math. Phys.
12
,
2259
(
1971
).
44.
R.
Tanner
, “
A recursive approach to low complexity codes
,”
IEEE Trans. Inf. Theory
27
,
533
547
(
1981
).
45.
J. K.
Percus
, “
Correlation inequalities for Ising spin lattices
,”
Commun. Math. Phys.
40
,
283
308
(
1975
).
46.
S. B.
Shlosman
, “
Correlation inequalities and their applications
,”
J. Sov. Math.
15
,
79
101
(
1981
).
47.
R. B.
Griffiths
, “
Correlations in Ising ferromagnets. I
,”
J. Math. Phys.
8
,
478
(
1967
).
48.
D. G.
Kelly
and
S.
Sherman
, “
General Griffiths’ inequalities on correlations in Ising ferromagnets
,”
J. Math. Phys.
9
,
466
484
(
1968
).
49.
H. A.
Kramers
and
G. H.
Wannier
, “
Statistics of two-dimensional ferromagnet. Part I
,”
Phys. Rev.
60
,
252
262
(
1941
).
50.
H.
Nishimori
,
Statistical Physics of Spin Glasses and Information Processing: An Introduction
(
Clarendon Press
,
Oxford
,
2001
).
51.
D.
Gottesman
, “
Stabilizer codes and quantum error correction
,” Ph.D. thesis,
Caltech
,
1997
.
52.
A. R.
Calderbank
,
E. M.
Rains
,
P. M.
Shor
, and
N. J. A.
Sloane
, “
Quantum error correction via codes over GF(4)
,”
IEEE Trans. Inf. Theory
44
,
1369
1387
(
1998
).
53.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Infomation
(
Cambridge University Press
,
Cambridge, MA
,
2000
).
54.
J.
Preskill
,
Course Information for Physics 219/Computer Science 219 Quantum Computation
(
Caltech
,
2000
).
55.
A. R.
Calderbank
and
P. W.
Shor
, “
Good quantum error-correcting codes exist
,”
Phys. Rev. A
54
,
1098
1105
(
1996
).
56.
A. M.
Steane
, “
Simple quantum error-correcting codes
,”
Phys. Rev. A
54
,
4741
4751
(
1996
).
57.

Notice that any other construction of the dual matrix would at most change the partition function multiplicatively by a power of two.

58.
V.
Féray
,
P.-L.
Méliot
, and
A.
Nikeghbali
,
Mod-ϕ Convergence I: Normality Zones and Precise Deviations
(
Springer International Publishing
,
Cham
,
2016
); e-print arXiv:1304.2934v4.
59.
I.
Benjamini
and
O.
Schramm
, “
Recurrence of distributional limits of finite planar graphs
,”
Electron. J. Probab.
6
,
23-1
23-13
(
2001
); e-print arXiv:math/0011019.
60.
C.
Borgs
,
J.
Chayes
,
J.
Kahn
, and
L.
Lovász
, “
Left and right convergence of graphs with bounded degree
,”
Random Struct. Algorithms
42
,
1
28
(
2013
); e-print arXiv:1002.0115.
61.
L. M.
Lovász
, “
A short proof of the equivalence of left and right convergence for sparse graphs
,”
Eur. J. Combinatorics
53
,
1
7
(
2016
).
62.
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
M. S.
Green
(
Academic
,
London
,
1974
), Vol. 3.
63.
S.
Bravyi
and
B.
Terhal
, “
A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes
,”
New J. Phys.
11
,
043029
(
2009
).
64.
S.
Bravyi
,
D.
Poulin
, and
B.
Terhal
, “
Tradeoffs for reliable quantum information storage in 2D systems
,”
Phys. Rev. Lett.
104
,
050503
(
2010
); e-print arXiv:0909.5200.
65.
J.-P.
Tillich
and
G.
Zemor
, “
Quantum LDPC codes with positive rate and minimum distance proportional to n.
,” in
Proceedings IEEE International Symposium on Information Theory (ISIT)
(
IEEE
,
2009
), pp.
799
803
.
66.
A. A.
Kovalev
and
L. P.
Pryadko
, “
Quantum Kronecker sum-product low-density parity-check codes with finite rate
,”
Phys. Rev. A
88
,
012311
(
2013
).
67.
W.
Zeng
and
L. P.
Pryadko
, “
Higher-dimensional quantum hypergraph-product codes
,”
Phys. Rev. Lett.
122
,
230501
(
2018
); e-print arXiv:1810.01519.
68.
L.
Guth
and
A.
Lubotzky
, “
Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds
,”
J. Math. Phys.
55
,
082202
(
2014
); e-print arXiv:1310.5555.
69.
A.
Montanari
,
E.
Mossel
, and
A.
Sly
, “
The weak limit of Ising models on locally tree-like graphs
,”
Probab. Theory Relat. Fields
152
,
31
51
(
2012
).
70.
J.
Širáň
, “
Triangle group representations and constructions of regular maps
,”
Proc. London Math. Soc.
82
,
513
532
(
2001
).
71.
N.
Delfosse
and
G.
Zémor
, “
Quantum erasure-correcting codes and percolation on regular tilings of the hyperbolic plane
,” in
Information Theory Workshop (ITW), 2010
(
IEEE
,
2010
), pp.
1
5
.
72.
N.
Delfosse
and
G.
Zémor
, “
Upper bounds on the rate of low density stabilizer codes for the quantum erasure channel
,”
Quantum Info. Comput.
13
,
793
826
(
2013
); e-print arXiv:1205.7036.
73.
N.
Delfosse
, “
Tradeoffs for reliable quantum information storage in surface codes and color codes
,” in
IEEE International Symposium on Information Theory Proceedings (ISIT), 2013
(
IEEE
,
2013
), pp.
917
921
.
74.
N.
Delfosse
and
G.
Zémor
, “
A homological upper bound on critical probabilities for hyperbolic percolation
,”
Ann. Inst. Henri Poincaré D
3
,
139
161
(
2016
); e-print arXiv:1408.4031.
75.
N. P.
Breuckmann
and
B. M.
Terhal
, “
Constructions and noise threshold of hyperbolic surface codes
,”
IEEE Trans. Inf. Theory
62
,
3731
3744
(
2016
); e-print arXiv: 1506.04029.
76.
N. P.
Breuckmann
,
C.
Vuillot
,
E.
Campbell
,
A.
Krishna
, and
B. M.
Terhal
, “
Hyperbolic and semi-hyperbolic surface codes for quantum storage
,”
Quantum Sci. Technol.
2
,
035007
(
2017
).
77.
N. P.
Breuckmann
, “
Homological quantum codes beyond the toric code
,” Ph.D. thesis,
RWTH Aachen University
,
2017
; e-print arXiv:1802.01520.
78.
A. Y.
Kitaev
, “
Fault-tolerant quantum computation by anyons
,”
Ann. Phys.
303
,
2
(
2003
).
79.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
, “
Equation of state calculations by fast computing machines
,”
J. Chem. Phys.
21
,
1087
1092
(
1953
).
80.
U.
Wolff
, “
Collective Monte Carlo updating for spin systems
,”
Phys. Rev. Lett.
62
,
361
364
(
1989
).
81.
K.
Binder
, “
Finite size scaling analysis of Ising model block distribution functions
,”
Z. Phys. B: Condens. Matter
43
,
119
140
(
1981
).
82.
GAP, GAP—Groups, Algorithms, and Programming, Version 4.8.10, The GAP Group, 2018.
83.
I.
Dumer
,
A. A.
Kovalev
, and
L. P.
Pryadko
, “
Numerical techniques for finding the distances of quantum codes
,” in
IEEE International Symposium on Information Theory Proceedings (ISIT), 2014
(
IEEE
,
Honolulu, HI
,
2014
), pp.
1086
1090
.
84.
I.
Dumer
,
A. A.
Kovalev
, and
L. P.
Pryadko
, “
Distance verification for classical and quantum LDPC codes
,”
IEEE Trans. Inf. Theory
63
,
4675
4686
(
2017
).
85.
I.
Dumer
,
A. A.
Kovalev
, and
L. P.
Pryadko
, “
Thresholds for correcting errors, erasures, and faulty syndrome measurements in degenerate quantum codes
,”
Phys. Rev. Lett.
115
,
050502
(
2015
); e-print arXiv:1412.6172.
86.
M. E.
Fisher
, “
Critical temperatures of anisotropic Ising lattices. II. General upper bounds
,”
Phys. Rev.
162
,
480
485
(
1967
).
87.
J. L.
Lebowitz
, “
Bounds on the correlations and analyticity properties of ferromagnetic Ising spin systems
,”
Commun. Math. Phys.
28
,
313
321
(
1972
).
88.
J.
Bricmont
,
J. L.
Lebowitz
, and
C. E.
Pfister
, “
On the surface tension of lattice systems
,”
Ann. N. Y. Acad. Sci.
337
,
214
223
(
1980
).
89.
F. J.
MacWilliams
and
N. J. A.
Sloane
,
The Theory of Error-Correcting Codes
(
North-Holland
,
Amsterdam
,
1981
).
You do not currently have access to this content.