The box-ball system (BBS) is a simple model of soliton interaction introduced by Takahashi and Satsuma in the 1990s. Recent work of the authors, together with Tsuyoshi Kato and Satoshi Tsujimoto, derived various families of invariant measures for the BBS based on two-sided stationary Markov chains [D. A. Croydon et al., “Dynamics of the box-ball system with random initial conditions via Pitman’s transformation,” arXiv:1806.02147]. In this article, we survey the invariant measures that were presented in D. A. Croydon et al. and also introduce a family of new ones for periodic configurations that are expressed in terms of Gibbs measures. Moreover, we show that the former examples can be obtained as infinite volume limits of the latter. Another aspect of D. A. Croydon et al. was to describe scaling limits for the BBS; here, we review the results of D. A. Croydon et al. and also present scaling limits other than those that were covered there. One, the zigzag process has previously been observed in the context of queuing; another, a periodic version of the zigzag process, is apparently novel. Furthermore, we demonstrate that certain Palm measures associated with the stationary and periodic versions of the zigzag process yield natural invariant measures for the dynamics of corresponding versions of the ultradiscrete Toda lattice.

1.
M.
Albenque
, “
A note on the enumeration of directed animals via gas considerations
,”
Ann. Appl. Probab.
19
(
5
),
1860
1879
(
2009
).
2.
J.
Bertoin
and
R. A.
Doney
, “
On conditioning a random walk to stay nonnegative
,”
Ann. Probab.
22
(
4
),
2152
2167
(
1994
).
3.
P. J.
Burke
, “
The output of a queuing system
,”
Oper. Res.
4
,
699
704
(
1956
).
4.
D. A.
Croydon
,
T.
Kato
,
M.
Sasada
, and
S.
Tsujimoto
, “
Dynamics of the box-ball system with random initial conditions via Pitman’s transformation
,” preprint arXiv:1806.02147 (
2018
).
5.
D. A.
Croydon
,
M.
Sasada
, and
S.
Tsujimoto
, “
Dynamics of the ultra-discrete Toda lattice via Pitman’s transformation
,” preprint arXiv:1904.13185 (
2019
).
6.
A.
Dembo
and
O.
Zeitouni
,
Large Deviations Techniques and Applications
, Stochastic Modelling and Applied Probability Vol. 38 (
Springer-Verlag
,
Berlin
,
2010
), corrected reprint of the second edition, 1998.
7.
M.
Draief
,
J.
Mairesse
, and
N.
O’Connell
, “
Queues, stores, and tableaux
,”
J. Appl. Probab.
42
(
4
),
1145
1167
(
2005
).
8.
P. A.
Ferrari
,
C.
Nguyen
,
L.
Rolla
, and
M.
Wang
, “
Soliton decomposition of the box-ball system
,” preprint arXiv:1806.02798 (
2018
).
9.
P. A.
Ferrari
and
D.
Gabrielli
, “
BBS invariant measures with independent soliton components
,” preprint arXiv:1812.02437 (
2018
).
10.
P. W.
Glynn
and
H.
Thorisson
, “
Two-sided taboo limits for Markov processes and associated perfect simulation
,”
Stochastic Processes Appl.
91
(
1
),
1
20
(
2001
).
11.
P. W.
Glynn
and
H.
Thorisson
, “
Structural characterization of taboo-stationarity for general processes in two-sided time
,”
Stochastic Processes Appl.
102
(
2
),
311
318
(
2002
).
12.
B. M.
Hambly
,
J. B.
Martin
, and
N.
O’Connell
, “
Pitman’s 2M − X theorem for skip-free random walks with Markovian increments
,”
Electron. Commun. Probab.
6
,
73
77
(
2001
).
13.
T. E.
Harris
, “
Random measures and motions of point processes
,”
Z. Wahrscheinlichkeitstheorie Verw. Gebiete
18
,
85
115
(
1971
).
14.
J. M.
Harrison
and
R. J.
Williams
, “
On the quasireversibility of a multiclass Brownian service station
,”
Ann. Probab.
18
(
3
),
1249
1268
(
1990
).
15.
R.
Inoue
,
A.
Kuniba
, and
T.
Takagi
, “
Integrable structure of box-ball systems: Crystal, Bethe ansatz, ultradiscretization and tropical geometry
,”
J. Phys. A: Math. Theor.
45
(
7
),
073001
(
2012
).
16.
R.
Inoue
and
T.
Takenawa
, “
Tropical spectral curves and integrable cellular automata
,”
Int. Math. Res. Not. IMRN
2008
(
9
),
rnn019
.
17.
M.
Kac
, “
A stochastic model related to the telegrapher’s equation
,”
Rocky Mt. J. Math.
4
,
497
509
(
1974
), reprinting of an article published in 1956, Papers Arising from a Conference on Stochastic Differential Equations University Alberta, Edmonton, Alberta, 1972.
18.
T.
Kimijima
and
T.
Tokihiro
, “
Initial-value problem of the discrete periodic Toda equation and its ultradiscretization
,”
Inverse Probl.
18
(
6
),
1705
1732
(
2002
).
19.
L.
Levine
,
H.
Lyu
, and
J.
Pike
, “
Double jump phase transition in a soliton cellular automaton
,” preprint arXiv:1706.05621 (
2017
).
20.
A.
Nagai
,
T.
Tokihiro
, and
J.
Satsuma
, “
Ultra-discrete Toda molecule equation
,”
Phys. Lett. A
244
(
5
),
383
388
(
1998
).
21.
N.
O’Connell
and
M.
Yor
, “
Brownian analogues of Burke’s theorem
,”
Stochastic Processes Appl.
96
(
2
),
285
304
(
2001
).
22.
G.
Peskir
, “
On reflecting Brownian motion with drift
,” in
Proceedings of the 37th ISCIE International Symposium on Stochastic Systems Theory and its Applications, Institute of Systems, Control and Information Engineering (ISCIE)
(
ISCIE
,
Kyoto
,
2006
), pp.
1
5
.
23.
J. W.
Pitman
, “
One-dimensional Brownian motion and the three-dimensional Bessel process
,”
Adv. Appl. Probab.
7
(
3
),
511
526
(
1975
).
24.
S. C.
Port
and
C. J.
Stone
, “
Infinite particle systems
,”
Trans. Am. Math. Soc.
178
,
307
340
(
1973
).
25.
M.
Rigol
,
V.
Dunjko
,
V.
Yurovsky
, and
M.
Olshanii
, “
Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons
,”
Phys. Rev. Lett.
98
,
050405
(
2007
).
26.
M.
Rigol
,
A.
Muramatsu
, and
M.
Olshanii
, “
Hard-core bosons on optical superlattices: Dynamics and relaxation in the superfluid and insulating regimes
,”
Phys. Rev. A
74
,
053616
(
2006
).
27.
T.
Takagi
, “
Commuting time evolutions in the tropical periodic toda lattice
,”
J. Phys. Soc. Jpn.
81
(
10
),
104005
(
2012
).
28.
D.
Takahashi
and
J.
Satsuma
, “
A soliton cellular automaton
,”
J. Phys. Soc. Jpn.
59
,
3514
3519
(
1990
).
29.
T.
Tokihiro
, “
Ultradiscrete systems (cellular automata)
,” in
Discrete Integrable Systems
, Lecture Notes in Physics Vol. 644 (
Springer
,
Berlin
,
2004
), pp.
383
424
.
30.
T.
Tokihiro
,
The Mathematics of Box-Ball Systems
(
Asakura Shoten
,
2010
).
31.
T.
Tokihiro
,
D.
Takahashi
,
J.
Matsukidaira
, and
J.
Satsuma
, “
From soliton equations to integrable cellular automata through a limiting procedure
,”
Phys. Rev. Lett.
76
(
18
),
3247
3250
(
1996
).
32.
M.
Torii
,
D.
Takahashi
, and
J.
Satsuma
, “
Combinatorial representation of invariants of a soliton cellular automaton
,”
Physica D
92
(
3
),
209
220
(
1996
).
33.
L.
Vidmar
and
M.
Rigol
, “
Generalized Gibbs ensemble in integrable lattice models
,”
J. Stat. Mech.: Theor. Exp.
2016
(
6
),
064007
.
34.
D.
Yoshihara
,
F.
Yura
, and
T.
Tokihiro
, “
Fundamental cycle of a periodic box-ball system
,”
J. Phys. A: Math. Gen.
36
(
1
),
99
121
(
2003
).
35.
F.
Yura
and
T.
Tokihiro
, “
On a periodic soliton cellular automaton
,”
J. Phys. A: Math. Gen.
35
(
16
),
3787
3801
(
2002
).
You do not currently have access to this content.