Inspired by the Clebsch optimal control problem, we introduce a new variational principle that is suitable for capturing the geometry of relativistic field theories with constraints related to a gauge symmetry. Its special feature is that the Lagrange multipliers couple to the configuration variables via the symmetry group action. The resulting constraints are formulated as a condition on the momentum map of the gauge group action on the phase space of the system. We discuss the Hamiltonian picture and the reduction in the gauge symmetry by stages in this geometric setting. We show that the Yang–Mills–Higgs action and the Einstein–Hilbert action fit into this new framework after a (1 + 3)-splitting. Moreover, we recover the Gauß constraint of Yang–Mills–Higgs theory and the diffeomorphism constraint of general relativity as momentum map constraints.

1.
Abraham
,
R.
and
Marsden
,
J. E.
,
Foundations of Mechanics
, 2nd ed. (
Addison-Wesley Publishing Company
,
1980
).
2.
Arms
,
J. M.
, “
The structure of the solution set for the Yang-Mills equations
,”
Math. Proc. Cambridge Philos. Soc.
90
(
2
),
361
372
(
1981
).
3.
Arms
,
J. M.
,
Fischer
,
A. E.
, and
Marsden
,
J. E.
, “
Géometrie différentielle: Une approche symplectique pour des théorémes de décomposition en géométrie ou relativité générale
,”
C. R. Acad. Sci. Paris A
281
,
517
520
(
1975
).
4.
Arms
,
J. M.
,
Marsden
,
J. E.
, and
Moncrief
,
V.
, “
Symmetry and bifurcations of momentum mappings
,”
Commun. Math. Phys.
78
(
4
),
455
478
(
1981
).
5.
Arnowitt
,
R. L.
,
Deser
,
S.
, and
Misner
,
C. W.
, “
Dynamical structure and definition of energy in general relativity
,”
Phys. Rev.
116
(
5
),
1322
1330
(
1959
).
6.
Bär
,
C.
,
Ginoux
,
N.
, and
Pfäffle
,
F.
,
Wave Equations on Lorentzian Manifolds and Quantization
, ESI Lectures in Mathematics and Physics (
American Mathematical Society
,
2007
); e-print arXiv: 0806.1036 [math.DG].
7.
Bergmann
,
P. G.
and
Komar
,
A.
, “
The coordinate group symmetries of general relativity
,”
Int. J. Theor. Phys.
5
(
1
),
15
28
(
1972
).
8.
Bergvelt
,
M. J.
and
De Kerf
,
E. A.
, “
The Hamiltonian structure of Yang-Mills theories and instantons I
,”
Physica A
139
(
1
),
101
124
(
1986
).
9.
Bergvelt
,
M. J.
and
De Kerf
,
E. A.
, “
The Hamiltonian structure of Yang-Mills theories and instantons II
,”
Physica A
139
(
1
),
125
148
(
1986
).
10.
Blau
,
M.
,
Lecture Notes on General Relativity
(
Universität Bern
,
2018
).
11.
Blohmann
,
C.
,
Fernandes
,
M. C. B.
, and
Weinstein
,
A.
, “
Groupoid symmetry and constraints in general relativity
,”
Commun. Contemp. Math.
15
(
01
),
1250061
(
2013
); e-print arXiv: 1003.2857 [math.DG].
12.
Diez
,
T.
, “
Singular symplectic reduction for Fréchet group actions and the Cauchy problem for the Yang–Mills equation
,” Ph.D. thesis,
Universität Leipzig
,
2019
.
13.
Diez
,
T.
and
Rudolph
,
G.
, “
Singular symplectic cotangent bundle reduction of gauge field theory
,” e-print arXiv: 1812.04707 [math-ph] (
2018
).
14.
Fischer
,
A. E.
and
Marsden
,
J. E.
, “
The Einstein equations of evolution—A geometric approach
,”
J. Math. Phys.
13
(
4
),
546
568
(
1972
).
15.
Fischer
,
A. E.
and
Marsden
,
J. E.
, “
The initial value problem and the dynamical formulation of general relativity
,” in
General Relativity: An Einstein Centenary Survey
, edited by
Hawking
,
S. W.
and
Israel
,
W.
(
American Mathematical Society
,
1979
), pp.
138
211
.
16.
Gay-Balmaz
,
F.
,
Holm
,
D. D.
, and
Ratiu
,
T. S.
, “
Geometric dynamics of optimization
,”
Commun. Math. Sci.
11
(
1
),
163
231
(
2013
); e-print arXiv: 0912.2989 [nlin.CD].
17.
Gay-Balmaz
,
F.
and
Ratiu
,
T.
, “
Clebsch optimal control formulation in mechanics
,”
J. Geom. Mech.
3
(
1
),
41
79
(
2011
).
18.
Giulini
,
D.
, “
Dynamical and Hamiltonian formulation of general relativity
,” in
Springer Handbook of Spacetime
, edited by
Ashtekar
,
A.
and
Petkov
,
V.
(
Springer Berlin Heidelberg
,
2015
), pp.
323
362
; e-print arXiv: 1505.01403v1 [gr-qc].
19.
Gotay
,
M. J.
,
Isenberg
,
J.
, and
Marsden
,
J. E.
, “
Momentum maps and classical relativistic fields. Part II: Canonical analysis of field theories
,” e-print arXiv: math-ph/0411032 (
2004
).
20.
Gotay
,
M. J.
,
Nester
,
J. M.
, and
Hinds
,
G.
, “
Presymplectic manifolds and the Dirac–Bergmann theory of constraints
,”
J. Math. Phys.
19
(
11
),
2388
2399
(
1978
).
21.
Hamilton
,
R. S.
, “
The inverse function theorem of Nash and Moser
,”
Bull. Am. Math. Soc.
7
,
65
223
(
1982
).
22.
Husemoller
,
D.
,
Fibre Bundles
, 3rd ed., Graduate Texts in Mathematics (
Springer-Verlag
,
1993
).
23.
Iglesias-Zemmour
,
P.
,
Diffeology
, Mathematical Surveys and Monographs (
American Mathematical Society
,
2013
).
24.
Kijowski
,
J.
, “
A simple derivation of canonical structure and quasi-local Hamiltonians in general relativity
,”
Gen. Relativ. Gravitation
29
(
3
),
307
343
(
1997
).
25.
Kriegl
,
A.
and
Michor
,
P. W.
,
The Convenient Setting of Global Analysis
, Mathematical Surveys and Monographs Vol. 53 (
American Mathematical Society
,
1997
).
26.
Marsden
,
J. E.
,
Misiolek
,
G.
,
Ortega
,
J.-P.
,
Perlmutter
,
M.
, and
Ratiu
,
T. S.
,
Hamiltonian Reduction by Stages
, Lecture Notes in Mathematics Vol. 1913 (
Springer
,
2007
).
27.
Marsden
,
J.
and
Weinstein
,
A.
, “
Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids
,”
Physica D
7
(
1-3
),
305
323
(
1983
).
28.
Neeb
,
K.-H.
, “
Towards a Lie theory of locally convex groups
,”
Jpn. J. Math.
1
(
2
),
291
468
(
2006
).
29.
Ortega
,
J.-P.
and
Ratiu
,
T. S.
,
Momentum Maps and Hamiltonian Reduction
(
Birkhäuser Boston
,
2003
).
30.
Rudolph
,
G.
and
Schmidt
,
M.
,
Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Groups and Hamiltonian Systems
(
Springer
,
2012
).
31.
Rudolph
,
G.
and
Schmidt
,
M.
,
Differential Geometry and Mathematical Physics. Part II. Fibre Bundles, Topology and Gauge Fields
(
Springer
,
2017
).
32.
Wald
,
R. M.
,
General Relativity
(
University of Chicago Press
,
1984
).
33.
Wockel
,
C.
,
Infinite-Dimensional and Higher Structures in Differential Geometry
(
University of Hamburg
,
2014
).
34.

For example, we may take T*Q to be TQ and the pairing given by a Riemannian structure on Q. In applications, the fiber of TQ is often a space of mappings so that a convenient choice of the cotangent bundle consists of regular distributions inside the space of all distributions.

35.

More generally, one could give up the assumption of the existence of a local addition and instead work in the diffeological category.23 

36.

That is, Tγ(t0)Cγ̇(t0)=0.

37.

Here, we have used the identity (g(q,p))ωω=g(q,p), which in infinite dimensions requires additional assumptions of functional-analytic nature. For a precise formulation of the bifurcation lemma in an infinite-dimensional context, see Ref. 12.

38.

To be more precise, the reduction by stages theorem Ref. 26 (Theorem 4.2.2) is formulated for the free and proper action of a finite-dimensional group on a finite-dimensional phase space. Nonetheless, the peculiarities of our infinite-dimensional setting can be handled easily due to the simple form of the first reduction.

39.

This one-to-one correspondence will be used throughout the text without further notice.

40.

Although this convention is a bit nonstandard, the consistent use of dual-valued forms has the advantage that dual objects are clearly marked, which will be helpful later to identify them as points in the cotangent bundle (as opposed to elements of the tangent bundle).

41.

The diamond operator often occurs in the study of Lie–Poisson systems, and this is where we borrowed the notation from. Note that in a purely algebraic setting, the diamond product boils down to a map :F×F*g* dual to the Lie algebra action. Hence, it is a momentum map for the G-action on T*F. For example, if we consider the action of G = SO(3) on F=R3 and identify F* with R3, then the diamond product becomes the classical cross product.

42.
Equivalently, one can view A as a global coordinate function T*QΩ1(Σ,AdP) and δ as the exterior differential on T*Q. In this language, δAΩ1(T*Q,Ω1(Σ,AdP)) and then
are the field theoretic counterparts of the formulas θ = pidqi and Ω = dpi ∧ dqi in classical mechanics.
43.

We refer to Ref. 10 (Chap. 20) for a detailed discussion of boundary terms within the ADM formalism and to Ref. 24 for a new canonical description of the gravitational field dynamics in a finite volume with boundary. Clearly, our approach can be adapted to include boundary terms as well.

You do not currently have access to this content.