Quantum states with perfect correlation of continuous variable systems are investigated. On the basis of the property of perfect correlation, the local observable algebras are assumed to be type II1 factor von Neumann algebras. Consequently, finite dimensional matrices may be represented using elements of local observable algebras. Therefore, the dense coding and teleportation processes are identical in performance to those in the finite dimensional cases.
REFERENCES
1.
C. H.
Bennett
and S. J.
Wiesner
, Phys. Rev. Lett.
69
, 2881
(1992
).2.
3.
G.
Bowen
, Phys. Rev. A
63
, 022302
(2001
).4.
A. K.
Ekert
, Phys. Rev. Lett.
67
, 661
(1991
).5.
C. H.
Bennett
, G.
Brassard
, C.
Crépeau
, R.
Jozsa
, A.
Peres
, and W. K.
Wootters
, Phys. Rev. Lett.
70
, 1895
(1993
).6.
L.
Vaidman
, Phys. Rev. A
49
, 1473
(1994
).7.
M.
Horodecki
, P.
Horodecki
, and R.
Horodecki
, Phys. Rev. A
60
, 1888
(1999
).8.
A.
Einstein
, B.
Podolsky
, and N.
Rosen
, Phys. Rev.
47
, 777
(1935
).9.
E.
Schrödinger
, Math. Proc. Cambridge Philos. Soc.
31
, 555
(1935
).10.
11.
12.
R.
Horodecki
, P.
Horodecki
, M.
Horodecki
, and K.
Horodecki
, Rev. Mod. Phys.
81
, 865
(2009
).13.
F.
Grosshans
and P.
Grangier
, Phys. Rev. Lett.
88
, 057902
(2002
).14.
S. L.
Braunstein
and H. J.
Kimble
, Phys. Rev. Lett.
80
, 869
(1998
).15.
M.
Koniorczyk
, V.
Bužek
, and J.
Janszky
, Phys. Rev. A
64
, 034301
(2001
).16.
M. G. A.
Paris
, M.
Cola
, and R.
Bonifacio
, J. Opt. B: Quantum Semiclassical Opt.
5
, S360
(2003
).17.
R.
Arens
and V. S.
Varadarajan
, J. Math. Phys.
41
, 638
(2000
).18.
19.
S.
Huang
, J. Math. Phys.
49
, 112101
(2008
).20.
R.
Haag
, Local Quantum Physics: Fields, Particles, Algebras
(Springer
, 1996
).21.
O.
Bratteli
and D.
Robinson
, Operator Algebras and Quantum Statistical Mechanics, Volumes II
(Springer
, 2002
).22.
H.
Halvorson
, Lett. Math. Phys.
53
, 321
(2000
).23.
S.
Huang
, J. Math. Phys.
48
, 112102
(2007
).24.
R. V.
Kadison
and J. R.
Ringrose
, Fundamentals of the Theory of Operator Algebras, Volume II: Advanced Theory
(American Mathematical Society
, 1997
).25.
B.
Blackadar
, Operator Algebras: Theory of C*-Algebras and von Neumann Algebras
(Springer
, 2006
).26.
O.
Bratteli
and D.
Robinson
, Operator Algebras and Quantum Statistical Mechanics, Volume I
(Springer
, 2002
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.