We show that any linear quantization map into the space of self-adjoint operators in a Hilbert space violates the von Neumann rule on postcomposition with real functions.
REFERENCES
1.
S.
Twareque Ali
and M.
Engliš
, “Quantization methods: A guide for physicists and analysts
,” Rev. Math. Phys.
17
, 391
–490
(2005
); e-print arXiv:math-ph/0405065.2.
R.
Arens
and D.
Babbitt
, “Algebraic difficulties of preserving dynamical relations when forming quantum-mechanical operators
,” J. Math. Phys.
6
, 1071
(1965
).3.
A.
Bertuzzi
, A.
Gandolfi
, and A.
Germani
, “A Weierstrass-like theorem for rest separable Hilbert spaces
,” J. Approximation Theory
32
, 76
–81
(1981
).4.
R.
Brunetti
, K.
Fredenhagen
, and R.
Verch
, “The generally covariant locality principle—A new paradigm for local quantum physics
,” Commun. Math. Phys.
237
, 31
–68
(2003
); e-print arXiv:math-ph/0112041.5.
W.
Case
, “Wigner functions and Weyl transforms for pedestrians
,” Am. J. Phys.
76
, 937
(2008
).6.
P. A. M.
Dirac
, The Principles of Quantum Mechanics
, 3rd ed. (University Press
, Oxford, London
, 1947
).7.
F.
Embacher
, oral communication, Universität Wien (January 2019
).8.
M.
Engliš
, “Berezin-Toeplitz quantization and related topics
,” in Quantization, PDEs, and Geometry. The Interplay of Analysis and Mathematical Physics
, edited by B.
Dorothea
, B.
Wolfram
, and I.
Witt
(Birkhäuser
, 2016
).9.
M.
Engliš
, “A no-go theorem for nonlinear canonical quantization
,” Commun. Theor. Phys.
37
, 287
–288
(2002
).10.
C. J.
Fewster
, “Locally covariant quantum field theory and the problem of formulating the same physics in all spacetimes
,” Philos. Trans. R. Soc., A
373
, 20140238
(2015
); e-print arXiv:1502.04642.11.
F.
Finster
, “The continuum limit of causal Fermion systems
,” in Fundamental Theories of Physics
(Springer
, 2016
), Vol. 186; e-print arXiv:1605.04742.12.
G. B.
Folland
, Harmonic Analysis in Phase Space
, Annals of Mathematics Studies Vol. 122 (Princeton University Press
, Princeton
, 1989
).13.
M.
Hennings
, D.
Dubin
, and T.
Smith
, “Dequantization techniques for Weyl quantization
,” Publ. Res. Inst. Math. Sci. Kyoto Univ.
34
, 325
–354
(1998
).14.
T. F.
Jordan
, “Reconstructing a nonlinear dynamical framework for testing quantum mechanics
,” Ann. Phys.
225
, 83
–113
(1993
).15.
A.
Kapustin
, “Is quantum mechanics exact?
,” J. Math. Phys.
54
, 062107
(2013
).16.
T.
Kibble
, “Relativistic models of nonlinear quantum mechanics
,” Commun. Math. Phys.
64
, 73
–82
(1978
).17.
J.
von Neumann
, “Zur algebra der funktionaloperationen und theorie der normalen operatoren
,” Math. Ann.
102
(1
), 370
–427
(1930
).18.
J.
von Neumann
, Mathematical Foundations of Quantum Mechanics
(Princeton University Press
, Princeton
, 1955
).19.
J.
Polchinski
, “Nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox
,” Phys. Rev. Lett.
66
, 397
(1991
).20.
M. G.
Rasmussen
, “A Taylor-like expansion of a commutator with a function of self-adjoint, pairwise commuting operators
,” Math. Scand.
111
(1
), 107
–117
(2012
).21.
22.
M.
Schlichenmaier
, “Berezin-Toeplitz quantization and star products for compact Kaehler manifolds
,” e-print arXiv:1202.5927.23.
S.
Weinberg
, “Testing quantum mechanics
,” Ann. Phys.
194
, 336
–386
(1989
).24.
25.
P.
Eugene
, Wigner: Symmetries and Reflections
(Indiana University Press
, Bloomington
, 1967
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.