We show that any linear quantization map into the space of self-adjoint operators in a Hilbert space violates the von Neumann rule on postcomposition with real functions.

1.
S.
Twareque Ali
and
M.
Engliš
, “
Quantization methods: A guide for physicists and analysts
,”
Rev. Math. Phys.
17
,
391
490
(
2005
); e-print arXiv:math-ph/0405065.
2.
R.
Arens
and
D.
Babbitt
, “
Algebraic difficulties of preserving dynamical relations when forming quantum-mechanical operators
,”
J. Math. Phys.
6
,
1071
(
1965
).
3.
A.
Bertuzzi
,
A.
Gandolfi
, and
A.
Germani
, “
A Weierstrass-like theorem for rest separable Hilbert spaces
,”
J. Approximation Theory
32
,
76
81
(
1981
).
4.
R.
Brunetti
,
K.
Fredenhagen
, and
R.
Verch
, “
The generally covariant locality principle—A new paradigm for local quantum physics
,”
Commun. Math. Phys.
237
,
31
68
(
2003
); e-print arXiv:math-ph/0112041.
5.
W.
Case
, “
Wigner functions and Weyl transforms for pedestrians
,”
Am. J. Phys.
76
,
937
(
2008
).
6.
P. A. M.
Dirac
,
The Principles of Quantum Mechanics
, 3rd ed. (
University Press
,
Oxford, London
,
1947
).
7.
F.
Embacher
, oral communication, Universität Wien (
January 2019
).
8.
M.
Engliš
, “
Berezin-Toeplitz quantization and related topics
,” in
Quantization, PDEs, and Geometry. The Interplay of Analysis and Mathematical Physics
, edited by
B.
Dorothea
,
B.
Wolfram
, and
I.
Witt
(
Birkhäuser
,
2016
).
9.
M.
Engliš
, “
A no-go theorem for nonlinear canonical quantization
,”
Commun. Theor. Phys.
37
,
287
288
(
2002
).
10.
C. J.
Fewster
, “
Locally covariant quantum field theory and the problem of formulating the same physics in all spacetimes
,”
Philos. Trans. R. Soc., A
373
,
20140238
(
2015
); e-print arXiv:1502.04642.
11.
F.
Finster
, “
The continuum limit of causal Fermion systems
,” in
Fundamental Theories of Physics
(
Springer
,
2016
), Vol. 186; e-print arXiv:1605.04742.
12.
G. B.
Folland
,
Harmonic Analysis in Phase Space
, Annals of Mathematics Studies Vol. 122 (
Princeton University Press
,
Princeton
,
1989
).
13.
M.
Hennings
,
D.
Dubin
, and
T.
Smith
, “
Dequantization techniques for Weyl quantization
,”
Publ. Res. Inst. Math. Sci. Kyoto Univ.
34
,
325
354
(
1998
).
14.
T. F.
Jordan
, “
Reconstructing a nonlinear dynamical framework for testing quantum mechanics
,”
Ann. Phys.
225
,
83
113
(
1993
).
15.
A.
Kapustin
, “
Is quantum mechanics exact?
,”
J. Math. Phys.
54
,
062107
(
2013
).
16.
T.
Kibble
, “
Relativistic models of nonlinear quantum mechanics
,”
Commun. Math. Phys.
64
,
73
82
(
1978
).
17.
J.
von Neumann
, “
Zur algebra der funktionaloperationen und theorie der normalen operatoren
,”
Math. Ann.
102
(
1
),
370
427
(
1930
).
18.
J.
von Neumann
,
Mathematical Foundations of Quantum Mechanics
(
Princeton University Press
,
Princeton
,
1955
).
19.
J.
Polchinski
, “
Nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox
,”
Phys. Rev. Lett.
66
,
397
(
1991
).
20.
M. G.
Rasmussen
, “
A Taylor-like expansion of a commutator with a function of self-adjoint, pairwise commuting operators
,”
Math. Scand.
111
(
1
),
107
117
(
2012
).
21.
C. E.
Rickart
,
General Theory of Banach Algebras
(
D. Van Nostrand
,
New York
,
1960
).
22.
M.
Schlichenmaier
, “
Berezin-Toeplitz quantization and star products for compact Kaehler manifolds
,” e-print arXiv:1202.5927.
23.
S.
Weinberg
, “
Testing quantum mechanics
,”
Ann. Phys.
194
,
336
386
(
1989
).
24.
H.
Weyl
,
The Theory of Groups and Quantum Mechanics
(
Dover
,
New York
,
1931
).
25.
P.
Eugene
,
Wigner: Symmetries and Reflections
(
Indiana University Press
,
Bloomington
,
1967
).
You do not currently have access to this content.