In 1947, Bogoliubov suggested a heuristic theory to compute the excitation spectrum of weakly interacting Bose gases. Such a theory predicts a linear excitation spectrum and provides expressions for the thermodynamic functions which are believed to be correct in the dilute limit. Thus far, there are only a few cases where the predictions of Bogoliubov can be obtained by means of rigorous mathematical analysis. A major challenge is to control the corrections beyond Bogoliubov theory, namely, to test the validity of Bogoliubov’s predictions in regimes where the approximations made by Bogoliubov are not valid. In these notes, we discuss how this challenge can be addressed in the case of a system of N interacting bosons trapped in a box with volume one in the Gross-Pitaevskii limit, where the scattering length of the potential is of the order 1/N and N tends to infinity. This is a recent result obtained in Boccato et al. [Commun. Math. Phys. (to be published); preprint arXiv:1812.03086 and Acta Math. 222, 219–335 (2019); e-print arXiv:1801.01389], which extends a previous result obtained in Boccato et al. [Commun. Math. Phys. 359, 975 (2018)], removing the assumption of a small interaction potential.

1.
P.
Kapitza
, “
Viscosity of liquid helium below the λ-point
,”
Nature
141
,
74
(
1938
).
2.
J.
Allen
and
A.
Misener
, “
Flow of liquid helium II
,”
Nature
141
,
75
(
1938
).
3.
M. H.
Anderson
,
J. R.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose–Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
201
(
1995
).
4.
C. C.
Bradley
,
C. A.
Sackett
,
J. J.
Tollett
, and
R. G.
Hulet
, “
Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions
,”
Phys. Rev. Lett.
75
,
1687
(
1995
).
5.
K. B.
Davis
,
M. O.
Mewes
,
M. R.
Andrews
,
N. J.
Van Druten
,
D. S.
Durfee
,
D. M.
Kurn
, and
W.
Ketterle
, “
Bose–Einstein condensation in a gas of sodium atoms
,”
Phys. Rev. Lett.
75
,
3969
(
1995
).
6.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Optimal rate for Bose-Einstein condensation in the Gross-Pitaevskii regime
,”
Commun. Math. Phys.
(to be published); preprint arXiv:1812.03086.
7.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Bogoliubov theory in the Gross-Pitaevskii limit
,”
Acta Math.
222
,
219
335
(
2019
); e-print arXiv:1801.01389.
8.
N.
Bogoliubov
, “
On the theory of superfluidity
,”
Acad. Sci. USSR. J. Phys.
11
,
23
32
(
1947
)
N.
Bogoliubov
, [
Izv. Akad. Nauk. USSR
,
11
,
77
(
1947
)].
9.
E. H.
Lieb
,
R.
Seiringer
,
J. P.
Solovej
, and
J.
Yngvason
,
The Mathematics of the Bose Gas and its Condensation
, Oberwolfach Seminars (
Birkhäuser Basel
,
2005
), Vol.
34
.
10.
The linearity for small momenta of the expression (4) for the excitation spectrum was used by Bogoliubov to explain the emergence of superfluidity, via the so called Landau criterion, see
L. D.
Landau
, “
Theory of the superfluidity of helium II
,”
Phys. Rev.
60
,
356
358
1941
.
11.

In the regime where δ=ρV^(0)31, it is easy to see that if we take the thermodynamic limit in the second and third line of (3), the contribution to the integral coming from momenta larger than δα(ρV^(0))1/2 for any α > 0 is of smaller order in δ w.r.t. NρV^(0)(ρV^(0)3)1/2. Moreover, for momenta smaller than δα(ρV^(0))1/2 with 0 < α < 1/2 we can substitute in the same integral V^(p) by V^(0), again up to errors of smaller order in δ w.r.t. NρV^(0)(ρV^(0)3)1/2. Hence Bogoliubov’s substitution of V^(0) by 8πa0 occurs at the level of the integral over momenta smaller than δα(ρV^(0))1/2 with 0 < α < 1/2.

12.
T. D.
Lee
and
C. N.
Yang
, “
Many-body problem in quantum statistical mechanics V. Degenerate phase in Bose-Einstein condensation
,”
Phys. Rev.
117
,
897
(
1960
).
13.
T. D.
Lee
,
K.
Huang
, and
C. N.
Yang
, “
Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,”
Phys. Rev.
106
,
1135
(
1957
).
14.
Notice also that both the Lee-Huang-Yang formula (5) and the prediction (7) for the condensate depletion have been also recently measured in experiments, see
R.
Lopes
 et al, “
Quantum depletion of a homogeneous Bose-Einstein condensate
,”
Phys. Rev. Lett.
119
,
190404
2017
.
[PubMed]
and
N.
Navon
 et al, “
Dynamics and thermodynamics of the low-temperature strongly interacting Bose gas
,”
Phys. Rev. Lett.
107
,
135301
2011
.
[PubMed]
15.
S. T.
Beliaev
, “
Application of the methods of quantum field theory to a system of bosons
,”
JETP
7
(
2
),
289
299
(
1958
).
16.
N. M.
Hugenholtz
and
D.
Pines
, “
Ground-state energy and excitation spectrum of a system of interacting bosons
,”
Phys. Rev.
116
,
489
(
1969
).
17.
J.
Gavoret
and
P.
Noziéres
, “
Structure of the perturbation expansion for the Bose liquid at zero temperature
,”
Ann. Phys.
28
,
349
399
(
1964
).
18.
A.
Nepomnyashchii
and
A.
Nepomnyashchii
, “
Infrared divergence in field theory of a Bose system with a condensate
,”
JETP
48
(
3
),
493
501
(
1978
).
19.
V. N.
Popov
and
A. V.
Seredniakov
, “
Low-frequency asymptotic form of the self-energy parts of a superfluid bose system at t = 0
,”
JETP
50
(
1
),
193
195
(
1979
).
20.
G.
Benfatto
, “
Renormalization group approach to zero temperature Bose condensation
,” in
Proceedings of the Workshop on Constructive Results in Field Theory, Statistical Mechanics and Condensed Matter Physics
,
Palaiseau
,
25–27 July 1994
.
21.
C.
Castellani
,
C.
Di Castro
,
F.
Pistolesi
, and
G. C.
Strinati
, “
Infrared behavior of interacting bosons at zero temperature
,”
Phys. Rev. Lett.
78
,
1612
(
1997
).
22.
F.
Pistolesi
,
C.
Castellani
,
C.
Di Castro
, and
G. C.
Strinati
, “
Renormalization group approach to the infrared behavior of a zero-temperature Bose system
,”
Phys. Rev. B
69
,
024513
(
2004
).
23.

The method employed by Benfatto in Ref. 8 is the Wilsonian Renormalization Group, combined with the ideas of constructive renormalization group, in the form developed by the roman school of Benfatto, Gallavotti et al. since the late seventies. See also Refs. 21 and 22 for similar theoretical physics results obtained by means of dimensional regularization.

24.
T.
Balaban
,
J.
Feldman
,
H.
Knörrer
, and
E.
Trubowitz
, “
Complex bosonic many-body models: Overview of the small field parabolic flow
,”
Ann. Henri Poincaré
18
,
2873
2903
(
2017
).
25.
E. H.
Lieb
and
J. P.
Solovej
, “
Ground state energy of the one-component charged Bose gas
,”
Commun. Math. Phys.
217
,
127
163
(
2001
);
Erratum, 225,
219
221
(
2002
).
26.
E. H.
Lieb
and
J. P.
Solovej
, “
Ground state energy of the two-component charged Bose gas
,”
Commun. Math. Phys.
252
,
485
534
(
2004
).
27.
J. P.
Solovej
, “
Upper bounds to the ground state energies of the one- and two-component charged Bose gases
,”
Commun. Math. Phys.
266
,
797
818
(
2006
).
28.
A.
Giuliani
and
R.
Seiringer
, “
The ground state energy of the weakly interacting Bose gas at high density
,”
J. Stat. Phys.
135
,
915
(
2009
).
29.
B.
Brietzke
and
J. P.
Solovej
, “
The second order correction to the ground state energy of the dilute Bose gas
,” preprint arXiv:1901.00537 (
2019
).
30.
H. T.
Yau
and
J.
Yin
, “
The second order upper bound for the ground state energy of a Bose gas
,”
J. Stat. Phys.
136
,
453
503
(
2009
).
31.
L.
Erdös
,
B.
Schlein
, and
H. T.
Yau
, “
Ground-state energy of a low-density Bose gas: A second order upper bound
,”
Phys. Rev. A
78
,
053627
(
2008
).
32.
S.
Fournais
and
J. P.
Solovej
, “
The second order correction to the ground state energy of the dilute Bose gas
,” preprint arXiv:1901.00537 (
2019
).
33.
B.
Brietzke
,
S.
Fournais
, and
J. P.
Solovej
, “
A simple 2nd order lower bound to the energy of dilute Bose gases
,” preprint arXiv:1901.00539 (
2019
).
34.
R.
Seiringer
, “
The excitation spectrum for weakly interacting bosons
,”
Commun. Math. Phys.
306
,
565
—-
578
(
2011
).
35.
P.
Grech
and
R.
Seiringer
, “
The excitation spectrum for weakly interacting bosons in a trap
,”
Commun. Math. Phys.
322
,
559
591
(
2013
).
36.
M.
Lewin
,
P. T.
Nam
,
S.
Serfaty
, and
J. P.
Solovej
, “
Bogoliubov spectrum of interacting Bose gases
,”
Commun. Pure Appl. Math.
68
,
413
471
(
2014
).
37.
J.
Dereziński
and
M.
Napiórkowski
, “
Excitation spectrum of interacting bosons in the mean-field infinite-volume limit
,”
Ann. Henri Poincaré
15
,
2409
2439
(
2014
).
38.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
Derivation of Hartree’s theory for generic mean-field Bose gases
,”
Adv. Math.
254
,
570
621
(
2014
).
39.
M.
Lewin
,
P. T.
Nam
, and
N.
Rougerie
, “
The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases
,”
Trans. Am. Math. Soc.
368
,
6131
6157
(
2016
).
40.
A.
Pizzo
, “
Bose particles in a box I. A convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian in the mean field limiting regime
,” preprint arXiv:1511.07022 (
2015
).
41.
A.
Pizzo
, “
Bose particles in a box II. A convergent expansion of the ground state of the Bogoliubov Hamiltonian in the mean field limiting regime
,” preprint arXiv:1511.07025 (
2015
).
42.
A.
Pizzo
, “
Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime
,” preprint arXiv:1511.07026 (
2015
).
43.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
The excitation spectrum of Bose gases interacting through singular potentials
,”
J. Eur. Math. Soc.
(to be published); preprint arXiv:1704.04819.
44.

Indeed, if we consider N bosons interacting through a potential scaling as N2V(Nx), and initially trapped in a volume of order one, it is known that at time zero the system exhibits Bose-Einstein condensation into the minimizer φL2(R3) of the Gross-Pitaevskii energy functional. If we now let the system evolve by removing the trapping, one expects condensation to be preserved at any time in the limit N → ∞, and the condensate wave function to evolve according to the Gross-Pitaevskii equation itφt=Δφt+4πa0|φt|2φt, with initial data φt= 0 = φ. This fact has been well established mathematically [see the references in Ref. 51 (Chap. 5), and the recent result53], and confirms the use of the Gross-Pitaevskii equation to effectively describe the time evolution of Bose-Einstein condensates.

45.
E.
Lieb
,
R.
Seiringer
, and
Y.
Yngvason
, “
Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,”
Phys. Rev. A
61
,
043602
(
2000
).
46.
E. H.
Lieb
and
R.
Seiringer
, “
Proof of Bose-Einstein condensation for dilute trapped gases
,”
Phys. Rev. Lett.
88
,
170409
(
2002
).
47.
E. H.
Lieb
and
R.
Seiringer
, “
Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,”
Commun. Math. Phys.
264
,
505
537
(
2006
).
48.
P. T.
Nam
,
N.
Rougerie
, and
R.
Seiringer
, “
Ground states of large bosonic systems: The Gross-Pitaevskii limit revisited
,”
Anal. PDE
9
,
459
485
(
2016
).
49.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Complete Bose-Einstein condensation in the Gross-Pitaevskii regime
,”
Commun. Math. Phys.
359
,
975
1026
(
2018
).
50.

Usually the second quantization formalism is used to represent the system in a grand-canonical picture, where the particle number can vary. On the contrary here the particle number is fixed to be N, but the excitation number is not fixed, and can vary up to N.

51.
N.
Benedikter
,
B.
Porta
, and
M.
Schlein
,
Effective Evolution Equations from Quantum Dynamics
, Springer Briefs in Mathematical Physics (
Springer
,
2016
).
52.
N.
Benedikter
,
G.
de Oliveira
, and
B.
Schlein
, “
Quantitative derivation of the Gross-Pitaevskii equation
,”
Commun. Pure Appl. Math.
68
,
1399
1482
(
2014
).
53.
C.
Brennecke
and
B.
Schlein
, “
Gross-Pitaevskii dynamics for Bose-Einstein condensates
,”
Anal. PDE
12
,
1513
1596
(
2019
).
54.
B.
Schlein
, “
Bogoliubov excitation spectrum for Bose-Einstein condensates
,” in
Proceedings of the International Congress of Mathematicians 2018, Rio de Janeiro
(
World Scientific
,
2018
), Vol. 2, pp.
2655
2672
.
You do not currently have access to this content.