We extend the theory of perturbations of KMS states to a class of unbounded perturbations using noncommutative Lp-spaces. We also prove certain stability of the domain of the modular operator associated with a ∥·∥p-continuous state. This allows us to define an analytic multiple-time KMS condition and to obtain its analyticity together with some bounds to its norm.

1.
H.
Araki
, “
Relative Hamiltonian for faithful normal states of a von Neumann algebra
,”
Publ. Res. I. Math. Sci.
9
,
165
209
(
1973
).
2.
S.
Sakai
,
Operator Algebras in Dynamical Systems
(
Cambridge University Press
,
1991
), Vol. 41.
3.
J.
Dereziński
,
C.-A.
Pillet
, and
V.
Jakšić
, “
Perturbation theory of W*-dynamics, Liouvilleans and KMS states
,”
Rev. Math. Phys.
15
,
447
489
(
2003
).
4.
G.
De Nittis
and
M.
Lein
, “
Linear response theory: A modern analytic-algebraic approach
,” e-print arXiv:1612.01710 (
2016
).
5.
J.-B.
Bru
and
W.
de Siqueira Pedra
, “
Universal bounds for large determinants from non-commutative Hölder inequalities in fermionic constructive quantum field theory
,”
Math. Models Methods Appl. Sci.
27
,
1963
1992
(
2017
).
6.
R.
Correa da Silva
, “
Noncommutative Lp-spaces and perturbation of KMS states
,” Ph.D. thesis,
University of São Paulo
,
2018
; in
Digital Library of Theses and Dissertations
(
University of Sao Paulo
,
2018
).
7.
O.
Bratteli
and
D. W. R.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics 1
, 2nd ed. (
Springer
,
Berlin
,
1987
).
8.
R. V.
Kadison
and
J. R.
Ringrose
,
Fundamentals of the Theory of Operator Algebras, Part I
(
Academic Press
,
New York
,
1983
).
9.
M.
Takesaki
,
Theory of Operator Algebras I
, Encyclopedia of Mathematical Sciences Vol. 124 (
Springer-Verlag
,
Berlin, Heidelberg
,
2002
).
10.
H.
Araki
, “
Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule
,”
Pac. J. Math.
50
,
309
354
(
1974
).
11.
R.
Correa da Silva
, “
Lecture notes on noncommutative Lp-spaces
,” e-print arXiv:1803.02390 (
2018
).
12.
H.
Araki
,
Mathematical Theory of Quantum Fields
(
Oxford University Press on Demand
,
1999
), Vol. 101.
13.
O.
Bratteli
and
D. W. R.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics 2
, 2nd ed. (
Springer
,
Berlin
,
1997
).
14.
R. V.
Kadison
and
J. R.
Ringrose
,
Fundamentals of the Theory of Operator Algebras, Part II
(
Academic Press
,
New York
,
1986
).
15.
R.
Haag
,
N. M.
Hugenholtz
, and
M.
Winnink
, “
On the equilibrium states in quantum statistical mechanics
,”
Commun. Math. Phys.
5
,
215
236
(
1967
).
16.
H.
Araki
, “
Expansional in Banach algebras
,”
Ann. Sci. Ec. Norm. Super.
6
,
67
84
(
1973
).
17.
I. E.
Segal
, “
A non-commutative extension of abstract integration
,”
Ann. Math.
57
,
401
457
(
1953
).
18.
J.
Dixmier
, “
Formes linéaires sur un anneau d’opérateurs
,”
Bull. Soc. Math. Fr.
81
,
9
39
(
1953
).
19.
U.
Haagerup
, “
Lp-spaces associated with an arbitrary von Neumann algebra
,” in
Algebres d’Opérateurs et leurs applications en physique mathématique Proc. Colloq., Marseille, 1977
(
CNRS
,
1979
), Vol. 274, pp.
175
184
.
20.
M.
Hilsum
, “
Les espaces Lp d’une algèbre de von neumann définies par la dérivée spatiale
,”
J. Funct. Anal.
40
,
151
169
(
1981
).
21.
J.-M.
Bouclet
,
F.
Germinet
,
A.
Klein
, and
J. H.
Schenker
, “
Linear response theory for magnetic Schrödinger operators in disordered media
,”
J. Funct. Anal.
226
,
301
372
(
2005
).
22.
N.
Dombrowski
and
F.
Germinet
, “
Linear response theory for random Schrödinger operators and noncommutative integration
,” preprint arXiv:1103.5498 (
2011
).
23.
V.
Jaksic
,
Y.
Ogata
,
Y.
Pautrat
, and
C.-A.
Pillet
, “
Entropic fluctuations in quantum statistical mechanics. An introduction
,” preprint arXiv:1106.3786 (
2011
).
24.
M.
Terp
,
Lp spaces associated with von Neumann algebras
, Notes, Math. Institute (
Copenhagen University
,
1981
), No. 3.
25.
M. B.
Ruskai
, “
Inequalities for traces on von Neumann algebras
,”
Commun. Math. Phys.
26
,
280
289
(
1972
).
26.
R.
Haag
,
Local Quantum Physics: Fields, Particles, Algebras
(
Springer Science & Business Media
,
2012
).
27.
D.
Buchholz
,
C.
D’Antoni
, and
K.
Fredenhagen
, “
The universal structure of local algebras
,”
Commun. Math. Phys.
111
,
123
135
(
1987
).
28.
U.
Haagerup
, “
Operator valued weights in von Neumann algebras, I
,”
J. Funct. Anal.
32
,
175
206
(
1979
).
29.
U.
Haagerup
, “
Operator valued weights in von Neumann algebras, II
,”
J. Funct. Anal.
33
,
339
361
(
1979
).
You do not currently have access to this content.