The slN-Onsager algebra has been introduced by Uglov and Ivanov in 1995. In this letter, a FRT presentation of the slN-Onsager algebra is given, and its current algebra and commutative subalgebra are constructed. Certain quotients of the slN-Onsager algebra are then considered, which produce “classical” (q = 1) analogs of higher rank extensions of the Askey-Wilson algebra. As examples, the cases N = 3 and N = 4 are described in detail.
REFERENCES
1.
P.
Baseilhac
, “An integrable structure related with tridiagonal algebras
,” Nucl. Phys. B
705
, 605
–619
(2005
); e-print arXiv:math-ph/0408025.2.
P.
Baseilhac
and S.
Belliard
, “Generalized q-Onsager algebras and boundary affine Toda field theories
,” Lett. Math. Phys.
93
, 213
–228
(2010
); e-print arXiv:0906.1215.3.
P.
Baseilhac
and S.
Belliard
, “An attractive basis for the q-Onsager algebra
,” e-print arXiv:1704.02950.4.
P.
Baseilhac
and K.
Koizumi
, “A new (in)finite dimensional algebra for quantum integrable models
,” Nucl. Phys. B
720
, 325
–347
(2005
); e-print arXiv:math-ph/0503036.5.
P.
Baseilhac
and K.
Koizumi
, “A deformed analogue of Onsager’s symmetry in the XXZ open spin chain
,” J. Stat. Mech.
0510
, P005
(2005
); e-print arXiv:hep-th/0507053;P.
Baseilhac
and K.
Koizumi
, “Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory
,” J. Stat. Mech.
2007
, P09006
; e-print arXiv:hep-th/0703106.6.
P.
Baseilhac
, S.
Belliard
, and N.
Crampe
, “FRT presentation of the Onsager algebras
,” Lett. Math. Phys.
108
, 2189
–2212
(2018
); e-print arXiv:1709.08555 [math-ph].7.
P.
Baseilhac
and N.
Crampe
, “FRT presentation of classical Askey-Wilson algebras
,” Lett. Math. Phys.
(published online); e-print arXiv:1806.07232.8.
P.
Baseilhac
and K.
Shigechi
, “A new current algebra and the reflection equation
,” Lett. Math. Phys.
92
, 47
–65
(2010
); e-print arXiv:0906.1482.9.
S.
Belliard
and N.
Crampe
, “Coideal algebras from twisted Manin triple
,” J. Geom. Phys.
62
, 2009
–2023
(2012
); e-print arXiv:1202.2312.10.
S.
Belliard
and V.
Fomin
, “Generalized q-Onsager algebras and dynamical K matrices
,” J. Phys. A
45
, 025201
(2012
); e-print arXiv:1106.1317.11.
E.
Date
and K.
Usami
, “On an analog of the Onsager algebra of type .
,” in Kac-Moody Lie Algebras and Related Topics
, Contemporary Mathematics Vol. 343 (American Mathematical Society
, Providence, RI
, 2004
), pp. 43
–51
.12.
B.
Davies
, “Onsager’s algebra and superintegrability
,” J. Phys. A
23
, 2245
–2261
(1990
);B.
Davies
, “Onsager’s algebra and the Dolan-Grady condition in the non-self-dual case
,” J. Math. Phys.
32
, 2945
–2950
(1991
).13.
L.
Dolan
and M.
Grady
, “Conserved charges from self-duality
,” Phys. Rev. D
25
, 1587
–1604
(1982
).14.
H.
Furutsu
and T.
Kojima
, “The Uq(slN) analogue of the XXZ chain with a boundary
,” J. Math. Phys.
41
, 4413
(2000
); e-print arXiv:solv-int/9905009.15.
A. M.
Gavrilik
and A. U.
Klimyk
, “q-Deformed orthogonal and pseudo-orthogonal algebras and their representations
,” Lett. Math. Phys.
21
, 215
–220
(1991
).16.
Y.
Granovskii
and A.
Zhedanov
, “Nature of the symmetry group of the 6j-symbol
,” Zh. Eksp. Teor. Fiz.
94
, 49
–54
(1988
)Y.
Granovskii
andA.
Zhedanov
[Soviet Phys.
JETP 67
, 1982
–1985
(1988
) (in English)]; Y. I.
Granovskii
and A.
Zhedanov
, “Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra slq(2),” e-print arXiv:hep-th/9304138; eprintY.
Granovskii
, I.
Lutzenko
, and A.
Zhedanov
, “Linear covariance algebra for slq(2)
,” J. Phys. A: Math. Gen.
26
, L357
–L359
(1993
).17.
H.
Huang
, “Finite-dimensional irreducible modules of the universal Askey-Wilson algebra
,” Commun. Math. Phys.
340
, 959
–984
(2015
); e-print arXiv:1210.1740.18.
H.-W.
Huang
, “An embedding of the universal Askey-Wilson algebra into Uq(sl2) ⊗ Uq(sl2) ⊗ Uq(sl2)
,” Nucl. Phys. B
922
, 401
–434
(2017
); e-print arXiv:1611.02130.19.
T.
Ito
and P.
Terwilliger
, “The augmented tridiagonal algebra
,” Kyushu J. Math.
64
(1
), 81
–144
(2010
); e-print arXiv:0904.2889v1.20.
M.
Jimbo
, “Quantum R matrix for the generalized Toda system
,” Commun. Math. Phys.
102
, 537
(1986
).21.
T.
Koornwinder
, “The relationship between Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case
,” SIGMA
3
, 063
(2007
); e-print arXiv:math.QA/0612730;T.
Koornwinder
, “Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra
,” SIGMA
4
, 052
(2008
); e-print arXiv:0711.2320.22.
T.
Koornwinder
and M.
Mazzocco
, “Dualities in the q-Askey scheme and degenerated DAHA
,” e-print arXiv:1803.02775.23.
A. U.
Klimyk
, “The nonstandard q-deformation of enveloping algebra U(son): Results and problems
,” Czech J. Phys.
51
, 332
–340
(2001
).24.
S.
Kolb
, “Quantum symmetric Kac-Moody pairs
,” Adv. Math.
267
, 395
–469
(2014
); e-print arXiv:1207.6036v1.25.
M.
Mazzocco
, “Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme
,” Nonlinearity
29
, 2565
(2016
); e-print arXiv:1307.6140.26.
A.
Molev
, M.
Nazarov
, and G.
Olshanski
, “Yangians and classical Lie algebras
,” Russ. Math. Surv.
51
(2
), 205
–282
(1996
); e-print arXiv:hep-th/9409025.27.
A. I.
Molev
, E.
Ragoucy
, and P.
Sorba
, “Coideal subalgebras in quantum affine algebras
,” Rev. Math. Phys.
15
, 789
–822
(2003
); e-print arXiv:math/0208140.28.
A.
Mironov
, A.
Morozov
, and A.
Sleptsov
, “On 6j-symbols for symmetric representations of Uq(suN)
,” JETP Lett.
106
, 630
(2017
); e-print arXiv:1709.02290.29.
S.
Nawata
, R.
Pichai
, and Zodinmawia
, “Multiplicity-free quantum 6j-symbols for Uq(slN)
,” Lett. Math. Phys.
103
, 1389
–1398
(2013
); e-print arXiv:1302.5143.30.
K.
Nomura
and P.
Terwilliger
, “Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair
,” Linear Algebra Appl.
420
, 198
–207
(2007
); e-print arXiv:math.RA/0605316.31.
L.
Onsager
, “Crystal statistics. I. A two-dimensional model with an order-disorder transition
,” Phys. Rev.
65
, 117
–149
(1944
).32.
J. H. H.
Perk
, “Star-triangle equations, quantum Lax pairs, and higher genus curves
,” in , edited by L.
Ehrenpreis
and R. C.
Gunning
(AMS
, 1989
); “The early history of the integrable chiral Potts model and the odd-even problem
,” e-print arXiv:1511.08526.33.
S.
Post
and A.
Walter
, “A higher rank extension of the Askey-Wilson algebra
,” e-print arXiv:1705.01860.34.
N. Yu.
Reshetikhin
, “Semiclassical 6-j symbols
,” paper presented at the Algebraic Methods in Mathematical Physics, Satellite Workshop to the ICMP
, 2018
.35.
N. Yu.
Reshetikhin
and M. A.
Semenov-Tian-Shansky
, “Central extensions of quantum current groups
,” Lett. Math. Phys.
19
, 133
–142
(1990
).36.
S. S.
Roan
, Onsager algebra, loop algebra and chiral Potts model, MPI 91-70, Max-Planck- Institut fur Mathematik
, Bonn
, 1991
.37.
H.
Rosengren
, “An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic)
,” Ramanujan J.
13
, 131
–166
(2007
); e-print arXiv:math/0312310.38.
E. K.
Sklyanin
, “On complete integrability of the Landau-Lifshitz equation
,” Preprint LOMI, E-3-79, LOMI
, Leningrad
, 1980
;E. K.
Sklyanin
, “The quantum inverse scattering method
,” Zap. Nauchn. Sem. LOMI
95
, 55
(1980
).39.
E. K.
Sklyanin
, “Boundary conditions for integrable quantum systems
,” J. Phys. A
21
, 2375
–2389
(1988
).40.
J. V.
Stokman
, “Generalized Onsager algebras
,” Algebr. Represent. Theor.
(published online); e-print arXiv:1810.07408.41.
P.
Terwilliger
, “Leonard pairs and dual polynomial sequences
,” preprint available at: https://www.math.wisc.edu/terwilli/lphistory.html.42.
P.
Terwilliger
, “The subconstituent algebra of an association scheme. III
,” J. Algebraic Combin.
2
(2
), 177
–210
(1993
).43.
P.
Terwilliger
, “Two relations that generalize the q-Serre relations and the Dolan-Grady relations
,” in Proceedings of the Nagoya 1999 International Workshop on Physics and Combinatorics
, edited by A. N.
Kirillov
, A.
Tsuchiya
, and H.
Umemura
(World Scientific
, 2001
), pp. 377
–398
; e-print arXiv:math.QA/0307016.44.
45.
P.
Terwilliger
, “The universal Askey-Wilson Algebra and DAHA of type
,” SIGMA
9
, 047
(2013
); e-print arXiv:1202.4673.46.
P.
Terwilliger
and R.
Vidunas
, “Leonard pairs and the Askey-Wilson relations
,” J. Algebra Appl.
3
, 411
–426
(2004
); e-print arXiv:math.QA/0305356.47.
D.
Uglov
and L.
Ivanov
, “sl(N) Onsager’s algebra and integrability
,” J. Stat. Phys.
82
, 87
(1996
); e-print arXiv:hep-th/9502068v1.48.
P.
Wiegmann
and A.
Zabrodin
, “Algebraization of difference eigenvalue equations related to Uq(sl2)
,” Nucl. Phys. B
451
, 699
–724
(1995
); e-print arXiv:cond-mat/9501129.49.
A. S.
Zhedanov
, “‘Hidden symmetry’ of the Askey-Wilson polynomials
,” Theor. Math. Phys.
89
, 1146
–1157
(1991
).50.
A. S.
Zhedanov
, “The ‘Higgs algebra’ as a quantum deformation of SU(2)
,” Mod. Phys. Lett. A
7
, 507
(1992
).51.
For N = 3, one recovers the usual Askey-Wilson algebra.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.