The slN-Onsager algebra has been introduced by Uglov and Ivanov in 1995. In this letter, a FRT presentation of the slN-Onsager algebra is given, and its current algebra and commutative subalgebra are constructed. Certain quotients of the slN-Onsager algebra are then considered, which produce “classical” (q = 1) analogs of higher rank extensions of the Askey-Wilson algebra. As examples, the cases N = 3 and N = 4 are described in detail.

1.
P.
Baseilhac
, “
An integrable structure related with tridiagonal algebras
,”
Nucl. Phys. B
705
,
605
619
(
2005
); e-print arXiv:math-ph/0408025.
2.
P.
Baseilhac
and
S.
Belliard
, “
Generalized q-Onsager algebras and boundary affine Toda field theories
,”
Lett. Math. Phys.
93
,
213
228
(
2010
); e-print arXiv:0906.1215.
3.
P.
Baseilhac
and
S.
Belliard
, “
An attractive basis for the q-Onsager algebra
,” e-print arXiv:1704.02950.
4.
P.
Baseilhac
and
K.
Koizumi
, “
A new (in)finite dimensional algebra for quantum integrable models
,”
Nucl. Phys. B
720
,
325
347
(
2005
); e-print arXiv:math-ph/0503036.
5.
P.
Baseilhac
and
K.
Koizumi
, “
A deformed analogue of Onsager’s symmetry in the XXZ open spin chain
,”
J. Stat. Mech.
0510
,
P005
(
2005
); e-print arXiv:hep-th/0507053;
P.
Baseilhac
and
K.
Koizumi
, “
Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory
,”
J. Stat. Mech.
2007
,
P09006
; e-print arXiv:hep-th/0703106.
6.
P.
Baseilhac
,
S.
Belliard
, and
N.
Crampe
, “
FRT presentation of the Onsager algebras
,”
Lett. Math. Phys.
108
,
2189
2212
(
2018
); e-print arXiv:1709.08555 [math-ph].
7.
P.
Baseilhac
and
N.
Crampe
, “
FRT presentation of classical Askey-Wilson algebras
,”
Lett. Math. Phys.
(published online); e-print arXiv:1806.07232.
8.
P.
Baseilhac
and
K.
Shigechi
, “
A new current algebra and the reflection equation
,”
Lett. Math. Phys.
92
,
47
65
(
2010
); e-print arXiv:0906.1482.
9.
S.
Belliard
and
N.
Crampe
, “
Coideal algebras from twisted Manin triple
,”
J. Geom. Phys.
62
,
2009
2023
(
2012
); e-print arXiv:1202.2312.
10.
S.
Belliard
and
V.
Fomin
, “
Generalized q-Onsager algebras and dynamical K matrices
,”
J. Phys. A
45
,
025201
(
2012
); e-print arXiv:1106.1317.
11.
E.
Date
and
K.
Usami
, “
On an analog of the Onsager algebra of type Dn(1).
,” in
Kac-Moody Lie Algebras and Related Topics
, Contemporary Mathematics Vol. 343 (
American Mathematical Society
,
Providence, RI
,
2004
), pp.
43
51
.
12.
B.
Davies
, “
Onsager’s algebra and superintegrability
,”
J. Phys. A
23
,
2245
2261
(
1990
);
B.
Davies
, “
Onsager’s algebra and the Dolan-Grady condition in the non-self-dual case
,”
J. Math. Phys.
32
,
2945
2950
(
1991
).
13.
L.
Dolan
and
M.
Grady
, “
Conserved charges from self-duality
,”
Phys. Rev. D
25
,
1587
1604
(
1982
).
14.
H.
Furutsu
and
T.
Kojima
, “
The Uq(slN) analogue of the XXZ chain with a boundary
,”
J. Math. Phys.
41
,
4413
(
2000
); e-print arXiv:solv-int/9905009.
15.
A. M.
Gavrilik
and
A. U.
Klimyk
, “
q-Deformed orthogonal and pseudo-orthogonal algebras and their representations
,”
Lett. Math. Phys.
21
,
215
220
(
1991
).
16.
Y.
Granovskii
and
A.
Zhedanov
, “
Nature of the symmetry group of the 6j-symbol
,”
Zh. Eksp. Teor. Fiz.
94
,
49
54
(
1988
)
Y.
Granovskii
and
A.
Zhedanov
[
Soviet Phys.
JETP
67
,
1982
1985
(
1988
) (in English)];
Y. I.
Granovskii
and
A.
Zhedanov
, “Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra slq(2),” e-print arXiv:hep-th/9304138; eprint
Y.
Granovskii
,
I.
Lutzenko
, and
A.
Zhedanov
, “
Linear covariance algebra for slq(2)
,”
J. Phys. A: Math. Gen.
26
,
L357
L359
(
1993
).
17.
H.
Huang
, “
Finite-dimensional irreducible modules of the universal Askey-Wilson algebra
,”
Commun. Math. Phys.
340
,
959
984
(
2015
); e-print arXiv:1210.1740.
18.
H.-W.
Huang
, “
An embedding of the universal Askey-Wilson algebra into Uq(sl2) ⊗ Uq(sl2) ⊗ Uq(sl2)
,”
Nucl. Phys. B
922
,
401
434
(
2017
); e-print arXiv:1611.02130.
19.
T.
Ito
and
P.
Terwilliger
, “
The augmented tridiagonal algebra
,”
Kyushu J. Math.
64
(
1
),
81
144
(
2010
); e-print arXiv:0904.2889v1.
20.
M.
Jimbo
, “
Quantum R matrix for the generalized Toda system
,”
Commun. Math. Phys.
102
,
537
(
1986
).
21.
T.
Koornwinder
, “
The relationship between Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case
,”
SIGMA
3
,
063
(
2007
); e-print arXiv:math.QA/0612730;
T.
Koornwinder
, “
Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra
,”
SIGMA
4
,
052
(
2008
); e-print arXiv:0711.2320.
22.
T.
Koornwinder
and
M.
Mazzocco
, “
Dualities in the q-Askey scheme and degenerated DAHA
,” e-print arXiv:1803.02775.
23.
A. U.
Klimyk
, “
The nonstandard q-deformation of enveloping algebra U(son): Results and problems
,”
Czech J. Phys.
51
,
332
340
(
2001
).
24.
S.
Kolb
, “
Quantum symmetric Kac-Moody pairs
,”
Adv. Math.
267
,
395
469
(
2014
); e-print arXiv:1207.6036v1.
25.
M.
Mazzocco
, “
Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme
,”
Nonlinearity
29
,
2565
(
2016
); e-print arXiv:1307.6140.
26.
A.
Molev
,
M.
Nazarov
, and
G.
Olshanski
, “
Yangians and classical Lie algebras
,”
Russ. Math. Surv.
51
(
2
),
205
282
(
1996
); e-print arXiv:hep-th/9409025.
27.
A. I.
Molev
,
E.
Ragoucy
, and
P.
Sorba
, “
Coideal subalgebras in quantum affine algebras
,”
Rev. Math. Phys.
15
,
789
822
(
2003
); e-print arXiv:math/0208140.
28.
A.
Mironov
,
A.
Morozov
, and
A.
Sleptsov
, “
On 6j-symbols for symmetric representations of Uq(suN)
,”
JETP Lett.
106
,
630
(
2017
); e-print arXiv:1709.02290.
29.
S.
Nawata
,
R.
Pichai
, and
Zodinmawia
, “
Multiplicity-free quantum 6j-symbols for Uq(slN)
,”
Lett. Math. Phys.
103
,
1389
1398
(
2013
); e-print arXiv:1302.5143.
30.
K.
Nomura
and
P.
Terwilliger
, “
Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair
,”
Linear Algebra Appl.
420
,
198
207
(
2007
); e-print arXiv:math.RA/0605316.
31.
L.
Onsager
, “
Crystal statistics. I. A two-dimensional model with an order-disorder transition
,”
Phys. Rev.
65
,
117
149
(
1944
).
32.
J. H. H.
Perk
, “
Star-triangle equations, quantum Lax pairs, and higher genus curves
,” in , edited by
L.
Ehrenpreis
and
R. C.
Gunning
(
AMS
,
1989
); “
The early history of the integrable chiral Potts model and the odd-even problem
,” e-print arXiv:1511.08526.
33.
S.
Post
and
A.
Walter
, “
A higher rank extension of the Askey-Wilson algebra
,” e-print arXiv:1705.01860.
34.
N. Yu.
Reshetikhin
, “
Semiclassical 6-j symbols
,” paper presented at the
Algebraic Methods in Mathematical Physics, Satellite Workshop to the ICMP
,
2018
.
35.
N. Yu.
Reshetikhin
and
M. A.
Semenov-Tian-Shansky
, “
Central extensions of quantum current groups
,”
Lett. Math. Phys.
19
,
133
142
(
1990
).
36.
S. S.
Roan
, Onsager algebra, loop algebra and chiral Potts model, MPI 91-70,
Max-Planck- Institut fur Mathematik
,
Bonn
,
1991
.
37.
H.
Rosengren
, “
An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic)
,”
Ramanujan J.
13
,
131
166
(
2007
); e-print arXiv:math/0312310.
38.
E. K.
Sklyanin
, “
On complete integrability of the Landau-Lifshitz equation
,” Preprint LOMI, E-3-79,
LOMI
,
Leningrad
,
1980
;
E. K.
Sklyanin
, “
The quantum inverse scattering method
,”
Zap. Nauchn. Sem. LOMI
95
,
55
(
1980
).
39.
E. K.
Sklyanin
, “
Boundary conditions for integrable quantum systems
,”
J. Phys. A
21
,
2375
2389
(
1988
).
40.
J. V.
Stokman
, “
Generalized Onsager algebras
,”
Algebr. Represent. Theor.
(published online); e-print arXiv:1810.07408.
41.
P.
Terwilliger
, “
Leonard pairs and dual polynomial sequences
,” preprint available at: https://www.math.wisc.edu/terwilli/lphistory.html.
42.
P.
Terwilliger
, “
The subconstituent algebra of an association scheme. III
,”
J. Algebraic Combin.
2
(
2
),
177
210
(
1993
).
43.
P.
Terwilliger
, “
Two relations that generalize the q-Serre relations and the Dolan-Grady relations
,” in
Proceedings of the Nagoya 1999 International Workshop on Physics and Combinatorics
, edited by
A. N.
Kirillov
,
A.
Tsuchiya
, and
H.
Umemura
(
World Scientific
,
2001
), pp.
377
398
; e-print arXiv:math.QA/0307016.
44.
P.
Terwilliger
, “
The universal Askey-Wilson algebra
,”
SIGMA
7
,
069
(
2011
); e-print arXiv:1104.2813.
45.
P.
Terwilliger
, “
The universal Askey-Wilson Algebra and DAHA of type
(C1,C1),”
SIGMA
9
,
047
(
2013
); e-print arXiv:1202.4673.
46.
P.
Terwilliger
and
R.
Vidunas
, “
Leonard pairs and the Askey-Wilson relations
,”
J. Algebra Appl.
3
,
411
426
(
2004
); e-print arXiv:math.QA/0305356.
47.
D.
Uglov
and
L.
Ivanov
, “
sl(N) Onsager’s algebra and integrability
,”
J. Stat. Phys.
82
,
87
(
1996
); e-print arXiv:hep-th/9502068v1.
48.
P.
Wiegmann
and
A.
Zabrodin
, “
Algebraization of difference eigenvalue equations related to Uq(sl2)
,”
Nucl. Phys. B
451
,
699
724
(
1995
); e-print arXiv:cond-mat/9501129.
49.
A. S.
Zhedanov
, “‘
Hidden symmetry’ of the Askey-Wilson polynomials
,”
Theor. Math. Phys.
89
,
1146
1157
(
1991
).
50.
A. S.
Zhedanov
, “
The ‘Higgs algebra’ as a quantum deformation of SU(2)
,”
Mod. Phys. Lett. A
7
,
507
(
1992
).
51.

For N = 3, one recovers the usual Askey-Wilson algebra.

52.

Generalized q−Onsager algebras are known to be isomorphic to certain coideal subalgebras of quantum affine algebras. The isomorphism is given in Ref. 2. For an interpretation within the theory of quantum symmetric pairs associated with Uq(g^); see Ref. 25.

You do not currently have access to this content.