From the viewpoint of integrable systems on algebraic curves, we discuss linearization of birational maps arising from the seed mutations of types A1(1) and A2(2), which enables us to construct the set of all cluster variables generating the corresponding cluster algebras. These birational maps induce discrete integrable systems on algebraic curves referred to as the types of the seed mutations from which they are arising. The invariant curve of type A1(1) is a conic, while the one of type A2(2) is a singular quartic curve. By applying the blowing-up of the singular quartic curve, the discrete integrable system of type A2(2) on the singular curve is transformed into the one on the conic, the invariant curve of type A1(1). We show that both the discrete integrable systems of types A1(1) and A2(2) commute with each other on the conic, the common invariant curve. We moreover show that these integrable systems are simultaneously linearized by means of the conserved quantities and their general solutions are obtained. By using the general solutions, we construct the sets of all cluster variables generating the cluster algebras of types A1(1) and A2(2).

1.
S.
Fomin
and
A.
Zelevinsky
, “
Cluster algebras I: Foundations
,”
J. Am. Math. Soc.
15
,
497
(
2002
).
2.
S.
Fomin
and
A.
Zelevinsky
, “
Y-systems and generalized associahedra
,”
Ann. Math.
158
,
977
(
2003
).
3.
R.
Inoue
,
O.
Iyama
,
A.
Kuniba
,
T.
Nakanishi
, and
J.
Suzuki
, “
Periodicities of T-systems and Y-systems
,”
Nagoya Math. J.
197
,
59
(
2010
).
4.
R.
Inoue
,
O.
Iyama
,
B.
Keller
,
A.
Kuniba
, and
T.
Nakanishi
, “
Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: Type Br
,”
Publ. Res. Inst. Math. Sci.
49
,
1
(
2013
).
5.
R.
Inoue
,
O.
Iyama
,
B.
Keller
,
A.
Kuniba
, and
T.
Nakanishi
, “
Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras II: Types Cr, F4, and G2
,”
Publ. Res. Inst. Math. Sci.
49
,
43
(
2013
).
6.
N.
Okubo
, “
Discrete integrable systems and cluster algebras
,”
RIMS Kôkyûroku Bessatsu
41
,
25
(
2013
).
7.
T.
Mase
, “
The Laurent phenomenon and discrete integrable systems
,”
RIMS Kôkyûroku Bessatsu
41
,
43
(
2013
).
8.
N.
Okubo
, “
Bilinear equations and q-discrete Painlevé equations satisfied by variables and coefficients in cluster algebras
,”
J. Phys. A: Math. Theor.
48
,
355201
(
2015
).
9.
A.
Marshakov
, “
Lie groups, cluster variables and integrable systems
,”
J. Geom. Phys.
67
,
16
(
2013
).
10.
T.
Mase
, “
Investigation into the role of the Laurent property in integrability
,”
J. Math. Phys.
57
,
022703
(
2016
).
11.
A.
Nobe
, “
Mutations of the cluster algebra of type A1(1) and the periodic discrete Toda lattice
,”
J. Phys. A: Math. Theor.
49
,
285201
(
2016
).
12.
M.
Bershtein
,
P.
Gavrylenko
, and
A.
Marshakov
, “
Cluster integrable systems, q-Painlevé equations and their quantization
,”
J. High Energy Phys.
2018
,
77
.
13.
V. G.
Kac
,
Infinite Dimensional Lie Algebras
(
Cambridge University Press
,
1994
).
14.
P.
Sherman
and
A.
Zelevinsky
, “
Positivity and canonical bases in rank 2 cluster algebras of finite and affine types
,”
Moscow Math. J.
4
,
947
(
2004
).
15.
P.
Caldero
and
A.
Zelevinsky
, “
Laurent expansions in cluster algebras via quiver representations
,”
Moscow Math. J.
6
,
411
(
2006
).
16.
A.
Zelevinsky
, “
Semicanonical basis generators of the cluster algebra of type A1(1).
,”
Electron. J. Combinatorics
14
,
N4
(
2007
).
17.
G. R. W.
Quispel
,
J. A. G.
Roberts
, and
C. J.
Thompson
, “
Integrable mappings and soliton equations II
,”
Physica D
34
,
183
(
1989
).
18.
T.
Tsuda
, “
Integrable mappings via rational elliptic surfaces
,”
J. Phys. A: Math. Gen.
37
,
2721
(
2004
).
19.
S.
Fomin
and
A.
Zelevinsky
, “
Cluster algebras II: Finite type classification
,”
Invent. Math.
154
,
63
(
2003
).
20.
S.
Fomin
and
A.
Zelevinsky
, “
Cluster algebras IV: Coefficients
,”
Compos. Math.
143
,
112
(
2007
).
21.
A.
Ramani
,
B.
Grammaticos
,
J.
Satsuma
, and
N.
Mimura
, “
Linearizable QRT mappings
,”
J. Phys. A: Math. Theor.
44
,
425201
(
2011
).
22.
K.
Lee
and
R.
Schiffler
, “
Positivity for cluster algebras
,”
Ann. Math.
182
,
73
(
2015
).
23.
M.
Gross
,
P.
Hacking
,
S.
Keel
, and
M.
Kontsevich
, “
Canonical bases for cluster algebras
,”
J. Am. Math. Soc.
31
,
497
(
2018
).
24.
M.
Bellon
and
C.
Viallet
, “
Algebraic entropy
,”
Commun. Math. Phys.
204
,
425
(
1999
).
25.
B.
Grammaticos
,
A.
Ramani
, and
V.
Papageorgiou
, “
Do integrable mappings have the Painlevé property?
,”
Phys. Rev. Lett.
67
,
1825
(
1991
).
26.
J.
Hietarinta
and
C.
Viallet
, “
Singularity confinement and chaos in discrete systems
,”
Phys. Rev. Lett.
81
,
325
(
1998
).
27.
J.
Richter-Gebert
,
B.
Sturmfels
, and
T.
Theobald
, “
First steps in tropical geometry
,”
Contemp. Math.
377
,
289
(
2005
).
28.
T.
Tokihiro
,
D.
Takahashi
,
J.
Matsukidaira
, and
J.
Satsuma
, “
From soliton equations to integrable cellular automata through a limiting procedure
,”
Phys. Rev. Lett.
76
,
3247
(
1996
).
29.
A.
Nobe
, “
Ultradiscrete QRT maps and tropical elliptic curves
,”
J. Phys. A: Math. Theor.
41
,
125205
(
2008
).
You do not currently have access to this content.