We extend the analysis of the Bogoliubov free energy functional to two dimensions at very low temperatures. For sufficiently weak interactions, we prove two term asymptotics for the ground state energy.

1.
J. O.
Andersen
, “
Ground state pressure and energy density of an interacting homogeneous Bose gas in two dimensions
,”
Eur. Phys. J. B
28
,
389
(
2002
).
2.
N. N.
Bogoliubov
, “
On the theory of superfluidity
,”
J. Phys.
11
,
23
(
1947
).
3.
B.
Brietzke
and
J. P.
Solovej
, “
The second order correction to the ground state energy of the dilute Bose gas
,” e-print arXiv:1901.00537 [math-ph].
4.
B.
Brietzke
,
S.
Fournais
, and
J. P.
Solovej
, “
A simple 2nd order lower bound to the energy of dilute Bose gases
,” e-print arXiv:1901.00539 [math-ph].
5.
P.
Cladé
,
C.
Ryu
,
A.
Ramanathan
,
K.
Helmerson
, and
W. D.
Phillips
, “
Observation of a 2D Bose gas: From thermal to quasicondensate to superfluid
,”
Phys. Rev. Lett.
102
,
170401
(
2009
).
6.
R. H.
Critchley
and
A.
Solomon
, “
A variational approach to superfluidity
,”
J. Stat. Phys.
14
,
381
393
(
1976
).
7.
A.
Deuchert
,
S.
Mayer
, and
R.
Seiringer
, private communcation (
2018
).
8.
A.
Deuchert
,
R.
Seiringer
, and
J.
Yngvason
, “
Bose–Einstein condensation in a dilute, trapped gas at positive temperature
,”
Commun. Math. Phys.
368
(
2
),
723
776
(
2019
).
9.
A.
Deuchert
and
R.
Seiringer
, “
Gross–Pitaevskii limit of a homogeneous Bose gas at positive temperature
,” preprint arXiv:1901.11363 [math-ph].
10.
F. J.
Dyson
, “
Ground-state energy of a hard-sphere gas
,”
Phys. Rev.
106
,
20
26
(
1957
).
11.
L.
Erdős
,
B.
Schlein
, and
H.-T.
Yau
, “
Ground-state energy of a low-density Bose gas: A second-order upper bound
,”
Phys. Rev. A
78
,
053627
(
2008
).
12.
D. S.
Fisher
and
P. C.
Hohenberg
, “
Dilute Bose gas in two dimensions
,”
Phys. Rev. B
37
,
4936
(
1988
).
13.
S.
Fournais
and
J. P.
Solovej
, “
The energy of dilute Bose gases
,” e-print arXiv:1904.06164 [math-ph].
14.
A.
Giuliani
and
R.
Seiringer
, “
The ground state energy of the weakly interacting Bose gas at high density
,”
J. Stat. Phys.
135
,
915
934
(
2009
).
15.
P. C.
Hohenberg
, “
Existence of long-range order in one and two dimensions
,”
Phys. Rev.
158
,
383
(
1967
).
16.
J. O.
Lee
, “
Ground state energy of dilute Bose gas in small negative potential case
,”
J. Stat. Phys.
134
,
1
18
(
2009
).
17.
T. D.
Lee
,
K.
Huang
, and
C. N.
Yang
, “
Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties
,”
Phys. Rev.
106
,
1135
1145
(
1957
).
18.
J. O.
Lee
and
J.
Yin
, “
A lower bound on the ground state energy of dilute Bose gas
,”
J. Math. Phys.
51
,
053302
(
2010
).
19.
E. H.
Lieb
,
R.
Seiringer
,
J. P.
Solovej
, and
J.
Yngvason
,
The Mathematics of the Bose Gas and its Condensation
(
Oberwolfach Seminars
,
Birkhäuser
,
2005
).
20.
E. H.
Lieb
,
R.
Seiringer
, and
J.
Yngvason
, “
Justification of c-number substitutions in bosonic Hamiltonians
,”
Phys. Rev. Lett.
94
,
080401
(
2005
).
21.
E. H.
Lieb
and
J.
Yngvason
, “
Ground state energy of the low density Bose gas
,”
Phys. Rev. Lett.
80
,
2504
2507
(
1998
).
22.
E. H.
Lieb
and
J.
Yngvason
, “
The ground state energy of a dilute two-dimensional Bose gas
,”
J. Stat. Phys.
103
,
509
526
(
2001
).
23.
R.
Lopes
,
C.
Eigen
,
N.
Navon
,
D.
Clement
,
R. P.
Smith
, and
Z.
Hadzibabic
, “
Quantum depletion of a homogeneous Bose–Einstein condensate
,”
Phys. Rev. Lett.
119
,
190404
(
2017
).
24.
N. D.
Mermin
and
H.
Wagner
, “
Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models
,”
Phys. Rev. Lett.
17
,
1133
1136
(
1966
).
25.
C.
Mora
and
Y.
Castin
, “
Extension of Bogoliubov theory to quasicondensates
,”
Phys. Rev. A
67
,
053615
(
2003
).
26.
C.
Mora
and
Y.
Castin
, “
Ground state energy of the two-dimensional weakly interacting Bose gas: First correction beyond Bogoliubov theory
,”
Phys. Rev. Lett.
102
,
180404
(
2009
).
27.
M.
Napiórkowski
,
R.
Reuvers
, and
J. P.
Solovej
, “
Bogoliubov free energy functional I. Existence of minimizers and phase diagram
,”
Arch. Ration. Mech. Anal.
229
(
3
),
1037
1090
(
2018
).
28.
M.
Napiórkowski
,
R.
Reuvers
, and
J. P.
Solovej
, “
Bogoliubov free energy functional II. The dilute limit
,”
Commun. Math. Phys.
360
(
1
),
347
403
(
2018
).
29.
M.
Napiórkowski
,
R.
Reuvers
, and
J. P.
Solovej
, “
Calculation of the critical temperature of a dilute Bose gas in the Bogoliubov approximation
,”
Europhys. Lett.
121
(
1
),
10007
(
2018
).
30.
K.
Nho
and
D. P.
Landau
, “
Bose–Einstein condensation temperature of a homogeneous weakly interacting Bose gas: PIMC study
,”
Phys. Rev. A
70
,
053614
(
2004
).
31.
S.
Pilati
,
J.
Boronat
,
J.
Casulleras
, and
S.
Giorgini
, “
Quantum Monte Carlo simulation of a two-dimensional Bose gas
,”
Phys. Rev. A
71
,
023605
(
2005
).
32.
V. N.
Popov
,
Functional Integrals in Quantum Field Theory and Statistical Physics
(
Reidel
,
Doordrecht
,
1983
).
33.
N.
Prokof ’ev
,
O.
Ruebenacker
, and
B.
Svistunov
, “
Critical point of a weakly interacting two-dimensional Bose gas
,”
Phys. Rev. Lett.
87
,
270402
(
2001
).
34.
M.
Schick
, “
Two-dimensional system of hard-core bosons
,”
Phys. Rev. A
3
,
1067
(
1971
).
35.
R.
Seiringer
, “
Free energy of a dilute Bose gas: Lower bound
,”
Commun. Math. Phys.
279
,
595
636
(
2008
).
36.
R.
Seiringer
and
D.
Ueltschi
, “
Rigorous upper bound on the critical temperature of dilute Bose gases
,”
Phys. Rev. B
80
,
014502
(
2009
).
37.
H.-T.
Yau
and
J.
Yin
, “
The second order upper bound for the ground energy of a Bose gas
,”
J. Stat. Phys.
136
,
453
503
(
2009
).
38.
J.
Yin
, “
Free energies of dilute Bose gases: Upper bound
,”
J. Stat. Phys.
141
,
683
726
(
2010
).
39.
J.
Yin
, “
The ground state energy of dilute Bose gas in potentials with positive scattering length
,”
Commun. Math. Phys.
295
,
1
28
(
2010
).
You do not currently have access to this content.