We consider a Bose gas trapped in the unit torus in the Gross-Pitaevskii regime. In the ground state, we prove that fluctuations of bounded one-particle observables satisfy a central limit theorem.
REFERENCES
1.
G.
Ben Arous
, K.
Kirkpatrick
, and B.
Schlein
, “A central limit theorem in many-body quantum dynamics
,” Commun. Math. Phys.
321
, 371
–417
(2013
).2.
C.
Boccato
, C.
Brennecke
, S.
Cenatiempo
, and B.
Schlein
, “Bogoliubov theory in the Gross-Pitaevskii limit
,” preprint arXiv:1801.01389.3.
S.
Buchholz
, C.
Saffirio
, and B.
Schlein
, “Multivariate central limit theorem in quantum dynamics
,” J. Stat. Phys.
154
(1-2
), 113
–152
(2014
).4.
M.
Lewin
, P. T.
Nam
, S.
Serfaty
, and J. P.
Solovej
, “Bogoliubov spectrum of interacting Bose gases
,” Commun. Pure Appl. Math.
68
(3
), 413
–471
(2014
).5.
E. H.
Lieb
and R.
Seiringer
, “Proof of Bose-Einstein condensation for dilute trapped gases
,” Phys. Rev. Lett.
88
, 170409
(2002
).6.
E. H.
Lieb
and R.
Seiringer
, “Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,” Commun. Math. Phys.
264
(2
), 505
–537
(2006
).7.
E. H.
Lieb
, R.
Seiringer
, and J.
Yngvason
, “Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,” Phys. Rev. A
61
, 043602
(2000
).8.
E. H.
Lieb
and J.
Yngvason
, “Ground state energy of the low density Bose gas
,” Phys. Rev. Lett.
80
, 2504
–2507
(1998
).9.
P. T.
Nam
, N.
Rougerie
, and R.
Seiringer
, “Ground states of large bosonic systems: The Gross-Pitaevskii limit revisited
,” Anal. PDE
9
(2
), 459
–485
(2016
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.