We consider a Bose gas trapped in the unit torus in the Gross-Pitaevskii regime. In the ground state, we prove that fluctuations of bounded one-particle observables satisfy a central limit theorem.

1.
G.
Ben Arous
,
K.
Kirkpatrick
, and
B.
Schlein
, “
A central limit theorem in many-body quantum dynamics
,”
Commun. Math. Phys.
321
,
371
417
(
2013
).
2.
C.
Boccato
,
C.
Brennecke
,
S.
Cenatiempo
, and
B.
Schlein
, “
Bogoliubov theory in the Gross-Pitaevskii limit
,” preprint arXiv:1801.01389.
3.
S.
Buchholz
,
C.
Saffirio
, and
B.
Schlein
, “
Multivariate central limit theorem in quantum dynamics
,”
J. Stat. Phys.
154
(
1-2
),
113
152
(
2014
).
4.
M.
Lewin
,
P. T.
Nam
,
S.
Serfaty
, and
J. P.
Solovej
, “
Bogoliubov spectrum of interacting Bose gases
,”
Commun. Pure Appl. Math.
68
(
3
),
413
471
(
2014
).
5.
E. H.
Lieb
and
R.
Seiringer
, “
Proof of Bose-Einstein condensation for dilute trapped gases
,”
Phys. Rev. Lett.
88
,
170409
(
2002
).
6.
E. H.
Lieb
and
R.
Seiringer
, “
Derivation of the Gross-Pitaevskii equation for rotating Bose gases
,”
Commun. Math. Phys.
264
(
2
),
505
537
(
2006
).
7.
E. H.
Lieb
,
R.
Seiringer
, and
J.
Yngvason
, “
Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional
,”
Phys. Rev. A
61
,
043602
(
2000
).
8.
E. H.
Lieb
and
J.
Yngvason
, “
Ground state energy of the low density Bose gas
,”
Phys. Rev. Lett.
80
,
2504
2507
(
1998
).
9.
P. T.
Nam
,
N.
Rougerie
, and
R.
Seiringer
, “
Ground states of large bosonic systems: The Gross-Pitaevskii limit revisited
,”
Anal. PDE
9
(
2
),
459
485
(
2016
).
You do not currently have access to this content.