We present a construction of an integrable model as a projective type limit of Calogero-Sutherland models of N fermionic particles, when N tends to infinity. Explicit formulas for limits of Dunkl operators and of commuting Hamiltonians by means of vertex operators are given.

1.
Alexandrov
,
A.
and
Zabrodin
,
A.
, “
Free fermions and tau-functions
,”
J. Geom. Phys.
67
,
37
80
(
2013
).
2.
Andric
,
I.
,
Jevicki
,
A.
, and
Levine
,
H.
, “
On the large-N limit in symplectic matrix models
,”
Nucl. Phys. B
215
,
307
(
1983
).
3.
Awata
,
H.
,
Matsuo
,
Y.
,
Odake
,
S.
, and
Shiraishi
,
J.
, “
Collective field theory, Calogero-Sutherland model and generalized matrix models
,”
Phys. Lett. B
347
(
1
),
49
55
(
1995
).
4.
Awata
,
H.
,
Matsuo
,
Y.
, and
Yamamoto
,
T.
, “
Collective field description of spin Calogero-Sutherland models
,”
J. Phys. A: Math. Gen.
29
,
3089
3098
(
1996
).
5.
Bernard
,
D.
,
Gaudin
,
M.
,
Haldane
,
F. D. M.
, and
Pasquier
,
V.
, “
Yang-Baxter equation in spin chains with long range interactions
,”
J. Phys. A: Math. Gen.
26
,
5219
(
1993
).
6.
Dunkl
,
C. F.
, “
Differential-difference operators associated to reflection groups
,”
Trans. Am. Math. Soc.
311
(
1
),
167
183
(
1989
).
7.
Heckman
,
G. J.
, “
An elementary approach to the hypergeometric shift operators of Opdam
,”
Invent. Math.
103
(
1
),
341
350
(
1991
).
8.
Kato
,
Y.
and
Kuramoto
,
Y.
, “
Exact solution of the Sutherland model with arbitrary internal symmetry
,”
Phys. Rev. Lett.
74
,
1222
(
1995
).
9.
Khoroshkin
,
S. M.
and
Matushko
,
M. G.
, “
Matrix coefficients of vertex operators and fermionic limit of spin Calogero–Sutherland system
” (unpublished).
10.
Khoroshkin
,
S. M.
,
Matushko
,
M. G.
, and
Sklyanin
,
E. K.
, “
On spin Calogero–Moser system at infinity
,”
J. Phys. A: Math. Theor.
50
(
11
),
115203
(
2017
).
11.
Macdonald
,
I. G.
,
Symmetric Functions and Hall Polynomials
(
Oxford University Press
,
1998
).
12.
Nazarov
,
M. L.
and
Sklyanin
,
E. K.
, “
Sekiguchi-Debiard operators at infinity
,”
Commun. Math. Phys.
324
(
3
),
831
849
(
2013
).
13.
Nazarov
,
M. L.
and
Sklyanin
,
E. K.
, “
Integrable hierarchy of the quantum Benjamin-Ono equation
,”
Symmetry, Integrability Geom.: Methods Appl.
9
,
078
(
2013
).
14.
Polychronakos
,
A. P.
, “
Exchange operator formalism for integrable systems of particles
,”
Phys. Rev. Lett.
69
(
5
),
703
(
1992
).
15.
Sergeev
,
A. N.
and
Veselov
,
A. P.
, “
Calogero-Moser operators in infinite dimension
,” eprint arXiv:0910.1984 (
2009
).
16.
Sergeev
,
A. N.
and
Veselov
,
A. P.
, “
Dunkl operators at infinity and Calogero-Moser systems
,”
Int. Math. Res. Not.
2015
(
21
),
10959
10986
.
17.
Stanley
,
R. P.
,
Enumerative Combinatorics
(
Cambridge University Press
,
Cambridge
,
1997
), Vol. 2.
18.
Uglov
,
D.
, “
Yangian actions on higher level irreducible integrable modules of affine gl^N.
,” preprint arXiv:math/9802048 (
1998
).
You do not currently have access to this content.