We establish a determinant formula for the bilinear form associated with the elliptic hypergeometric integrals of type BCn by studying the structure of q-difference equations to be satisfied by them. The determinant formula is proved by combining the q-difference equations of the determinant and its asymptotic analysis along the singularities. The elliptic interpolation functions of type BCn are essentially used in the study of the q-difference equations.

1.
K.
Aomoto
, “
q-analogue of de Rham cohomology associated with Jackson integrals, I
,”
Proc. Jpn. Acad., Ser. A
66
,
161
164
(
1990
);
K.
Aomoto
, “
q-analogue of de Rham cohomology associated with Jackson integrals, II
,”
Proc. Jpn. Acad., Ser. A
66
,
240
244
(
1990
).
2.
K.
Aomoto
, “
Finiteness of a cohomology associated with certain Jackson integrals
,”
Tôhoku Math. J.
43
,
75
101
(
1991
).
3.
K.
Aomoto
and
M.
Ito
, “
A determinant formula for a holonomic q-difference system associated with Jackson integrals of type BCn
,”
Adv. Math.
221
,
1069
1114
(
2009
).
4.
R.
Askey
and
J.
Wilson
, “
Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials
,”
Mem. Am. Math. Soc.
54
(
319
),
iv+55
(
1985
).
5.
H.
Coskun
and
R. A.
Gustafson
, “
Well-poised Macdonald functions Wλ and Jackson coefficients ωλ on BCn
,” in
Jack, Hall-Littlewood and Macdonald Polynomials
, Contemporary Mathematics Vol. 417 (
American Mathematical Societys
,
Providence, RI
,
2006
), pp.
127
155
.
6.
R. A.
Gustafson
, “
Some q-beta integrals on SU(n) and Sp(n) that generalize the Askey-Wilson and Nasrallah-Rahman integrals
,”
SIAM J. Math. Anal.
25
,
441
449
(
1994
).
7.
R. A.
Gustafson
, “
A generalization of Selberg’s beta integral
,”
Bull. Am. Math. Soc.
22
,
97
105
(
1990
).
8.
M.
Ishikawa
,
M.
Ito
, and
S.
Okada
, “
A compound determinant identity for rectangular matrices and determinants of Schur functions
,”
Adv. Appl. Math.
51
,
635
654
(
2013
).
9.
M.
Ito
, “
q-difference shift for a BCn-type Jackson integral arising from ‘elementary’ symmetric polynomials
,”
Adv. Math.
204
,
619
646
(
2006
).
10.
M.
Ito
, “
Three-term relations between interpolation polynomials for a BCn-type basic hypergeometric series
,”
Adv. Math.
226
,
4096
4130
(
2011
).
11.
M.
Ito
and
M.
Noumi
, “
Derivation of a BCn elliptic summation formula via the fundamental invariants
, ”
Constr. Approx.
45
,
33
46
(
2017
); e-print arXiv:1504.07018.
12.
M.
Ito
and
M.
Noumi
, “
Evaluation of the BCn elliptic Selberg integral via the fundamental invariants
,”
Proc. Am. Math. Soc.
145
,
689
703
(
2017
); e-print arXiv:1504.07317.
13.
M.
Ito
and
M.
Noumi
, “
A generalization of the Sears–Slater transformation and elliptic Lagrange interpolation of type BCn
,”
Adv. Math.
229
,
361
380
(
2016
); e-print arXiv:1506.07267.
14.
Y.
Komori
,
M.
Noumi
, and
J.
Shiraishi
, “
Kernel functions for difference operators of Ruijsenaars type and their applications
,”
Symmetry Integrability Geom. Methods Appl.
5
,
054
(
2009
).
15.
B.
Nassrallah
and
M.
Rahman
, “
Projection formulas, a reproducing kernel and a generating function for q-Wilson polynomials
,”
SIAM J. Math. Anal.
16
,
186
197
(
1985
).
16.
A.
Okounkov
, “
BC-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials
,”
Transform. Groups
3
,
181
207
(
1998
).
17.
A.
Okounkov
, “
Combinatorial formula for Macdonald polynomials and generic Macdonald polynomials, Transform
,”
Groups
8
,
293
305
(
2003
).
18.
E. M.
Rains
, “
BCn-symmetric Abelian functions
,”
Duke Math. J.
135
,
99
180
(
2006
).
19.
E. M.
Rains
and
V. P.
Spiridonov
, “
Determinants of elliptic hypergeometric integrals
,”
Funkt. Anal. Prilozhen.
43
,
67
86
(
2009
)
E. M.
Rains
and
V. P.
Spiridonov
[
Funct. Anal. Appl.
43
,
297
311
(
2009
)].
20.
V.
Tarasov
and
A.
Varchenko
, “
Geometry of q-hypergeometric functions, quantum affine algebras and elliptic quantum groups
,”
Astérisque
246
,
139
(
1997
).
21.
J. F.
van Diejen
, “
Self-dual Koornwinder–Macdonald polynomials
,”
Invent. Math.
126
,
319
339
(
1996
).
22.
J. F.
van Diejen
and
V. P.
Spiridonov
, “
Elliptic Selberg integrals
,”
Int. Math. Res. Notices
2001
,
1083
1110
.
You do not currently have access to this content.