The positive part Uq+ of Uq(sl^2) has a presentation with two generators A, B that satisfy the cubic q-Serre relations. We introduce a PBW basis for Uq+, said to be alternating. Each element of this PBW basis commutes with exactly one of A, B, qABq−1BA. This gives three types of PBW basis elements; the elements of each type mutually commute. We interpret the alternating PBW basis in terms of a q-shuffle algebra associated with affine sl2. We show how the alternating PBW basis is related to the PBW basis for Uq+ found by Damiani in 1993.

1.
P.
Baseilhac
, “
Deformed Dolan-Grady relations in quantum integrable models
,”
Nucl. Phys. B
709
,
491
521
(
2005
); e-print arXiv:hep-th/0404149.
2.
P.
Baseilhac
and
S.
Belliard
, “
An attractive basis for the q-Onsager algebra
,” e-print arXiv:1704.02950.
3.
P.
Baseilhac
and
K.
Koizumi
, “
A new (in)finite dimensional algebra for quantum integrable models
,”
Nucl. Phys. B
720
,
325
347
(
2005
); e-print arXiv:math-ph/0503036.
4.
P.
Baseilhac
and
S.
Kolb
, “
Braid group action and root vectors for the q-Onsager algebra
,” e-print arXiv:1706.08747.
5.
P.
Baseilhac
and
K.
Shigechi
, “
A new current algebra and the reflection equation
,”
Lett. Math. Phys.
92
,
47
65
(
2010
); e-print arXiv:0906.1482v2.
6.
V.
Chari
and
A.
Pressley
, “
Quantum affine algebras
,”
Commun. Math. Phys.
142
,
261
283
(
1991
).
7.
I.
Damiani
, “
A basis of type Poincare-Birkoff-Witt for the quantum algebra of sl^2.
,”
J. Algebra
161
,
291
310
(
1993
).
8.
J. A.
Green
, “
Shuffle algebras, Lie algebras and quantum groups
,” in
Téxtos de Matemática: Série B [Texts in Mathematics: Series B]
(
Universidade de Coimbra, Departamento de Matemática
,
Coimbra
,
1995
), Vol. 9, p.
vi+29
.
9.
B.
Leclerc
, “
Dual canonical bases, quantum shuffles and q-characters
,”
Math. Z.
246
,
691
732
(
2004
); e-print arXiv:math/0209133.
10.
G.
Lusztig
,
Introduction to Quantum Groups
, Progress in Mathematics 110 (
Birkhauser
,
Boston
,
1993
).
11.
M.
Rosso
, “
Groupes quantiques et algèbres de battage quantiques
,”
C. R. Acad. Sci. Paris
320
,
145
148
(
1995
).
12.
M.
Rosso
, “
Quantum groups and quantum shuffles
,”
Invent. Math.
133
,
399
416
(
1998
).
13.
P.
Terwilliger
, “
Two relations that generalize the q-Serre relations and the Dolan-Grady relations
,” in
Physics and Combinatorics 1999 (Nagoya)
(
World Scientific Publishing
,
River Edge, NJ
,
2001
), pp.
377
398
; e-print arXiv:math.QA/0307016.
14.
P.
Terwilliger
, “
The q-Onsager algebra and the positive part of Uq(sl^2).
,”
Linear Algebra Appl.
521
,
19
56
(
2017
); e-print arXiv:1506.08666.
15.
P.
Terwilliger
, “
The Lusztig automorphism of the q-Onsager algebra
,”
J. Algebra
506
,
56
75
(
2018
); e-print arXiv:1706.05546.
16.
P.
Terwilliger
, “
The q-Onsager algebra and the universal Askey-Wilson algebra
,”
Symmetry Integrability Geom. Methods Appl.
14
,
044
(
2018
).
17.
S.
Post
and
P.
Terwilliger
, “
An infinite-dimensional □q-module obtained from the q-shuffle algebra for affine sl2.
,” e-print arXiv:1806.10007.
18.
P.
Terwilliger
, “
Using Catalan words and a q-shuffle algebra to describe a PBW basis for the positive part of Uq(sl^2).
,”
J. Algebra
525
,
359
373
(
2019
); e-print arXiv:1806.11228.
19.
P.
Terwilliger
, “
An action of the free product Z2Z2Z2 on the q-Onsager algebra and its current algebra
,”
Nucl. Phys. B
936
,
306
319
(
2018
); e-print arXiv:1808.09901.
You do not currently have access to this content.