The positive part of has a presentation with two generators A, B that satisfy the cubic q-Serre relations. We introduce a PBW basis for , said to be alternating. Each element of this PBW basis commutes with exactly one of A, B, qAB − q−1BA. This gives three types of PBW basis elements; the elements of each type mutually commute. We interpret the alternating PBW basis in terms of a q-shuffle algebra associated with affine . We show how the alternating PBW basis is related to the PBW basis for found by Damiani in 1993.
REFERENCES
1.
P.
Baseilhac
, “Deformed Dolan-Grady relations in quantum integrable models
,” Nucl. Phys. B
709
, 491
–521
(2005
); e-print arXiv:hep-th/0404149.2.
P.
Baseilhac
and S.
Belliard
, “An attractive basis for the q-Onsager algebra
,” e-print arXiv:1704.02950.3.
P.
Baseilhac
and K.
Koizumi
, “A new (in)finite dimensional algebra for quantum integrable models
,” Nucl. Phys. B
720
, 325
–347
(2005
); e-print arXiv:math-ph/0503036.4.
P.
Baseilhac
and S.
Kolb
, “Braid group action and root vectors for the q-Onsager algebra
,” e-print arXiv:1706.08747.5.
P.
Baseilhac
and K.
Shigechi
, “A new current algebra and the reflection equation
,” Lett. Math. Phys.
92
, 47
–65
(2010
); e-print arXiv:0906.1482v2.6.
V.
Chari
and A.
Pressley
, “Quantum affine algebras
,” Commun. Math. Phys.
142
, 261
–283
(1991
).7.
I.
Damiani
, “A basis of type Poincare-Birkoff-Witt for the quantum algebra of .
,” J. Algebra
161
, 291
–310
(1993
).8.
J. A.
Green
, “Shuffle algebras, Lie algebras and quantum groups
,” in Téxtos de Matemática: Série B [Texts in Mathematics: Series B]
(Universidade de Coimbra, Departamento de Matemática
, Coimbra
, 1995
), Vol. 9, p. vi+29
.9.
B.
Leclerc
, “Dual canonical bases, quantum shuffles and q-characters
,” Math. Z.
246
, 691
–732
(2004
); e-print arXiv:math/0209133.10.
G.
Lusztig
, Introduction to Quantum Groups
, Progress in Mathematics 110 (Birkhauser
, Boston
, 1993
).11.
M.
Rosso
, “Groupes quantiques et algèbres de battage quantiques
,” C. R. Acad. Sci. Paris
320
, 145
–148
(1995
).12.
M.
Rosso
, “Quantum groups and quantum shuffles
,” Invent. Math.
133
, 399
–416
(1998
).13.
P.
Terwilliger
, “Two relations that generalize the q-Serre relations and the Dolan-Grady relations
,” in Physics and Combinatorics 1999 (Nagoya)
(World Scientific Publishing
, River Edge, NJ
, 2001
), pp. 377
–398
; e-print arXiv:math.QA/0307016.14.
P.
Terwilliger
, “The q-Onsager algebra and the positive part of .
,” Linear Algebra Appl.
521
, 19
–56
(2017
); e-print arXiv:1506.08666.15.
P.
Terwilliger
, “The Lusztig automorphism of the q-Onsager algebra
,” J. Algebra
506
, 56
–75
(2018
); e-print arXiv:1706.05546.16.
P.
Terwilliger
, “The q-Onsager algebra and the universal Askey-Wilson algebra
,” Symmetry Integrability Geom. Methods Appl.
14
, 044
(2018
).17.
S.
Post
and P.
Terwilliger
, “An infinite-dimensional □q-module obtained from the q-shuffle algebra for affine .
,” e-print arXiv:1806.10007.18.
P.
Terwilliger
, “Using Catalan words and a q-shuffle algebra to describe a PBW basis for the positive part of .
,” J. Algebra
525
, 359
–373
(2019
); e-print arXiv:1806.11228.19.
P.
Terwilliger
, “An action of the free product on the q-Onsager algebra and its current algebra
,” Nucl. Phys. B
936
, 306
–319
(2018
); e-print arXiv:1808.09901.© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.