In this paper, we investigate the existence of a positive solution to the Einstein-scalar field Lichnerowicz equation on the compact Riemannian manifold; we use a variational method which allows us to derive a new existence result which depends on the spectral properties of an appropriate operator. A Kazdan and Warner type obstruction is also found in the specific case when the initial value for the scalar field is a constant in the standard unit sphere.
REFERENCES
1.
M.
Benalili
, “On the singular Q-curvature type equation
,” J. Differ. Equations
254
(2
), 547
–598
(2013
).2.
P.
Baird
, A.
Fardoun
, and R.
Regbaoui
, “Prescribed Q-curvature on manifolds of even dimension
,” J. Geom. Phys.
59
, 221
–233
(2009
).3.
Y.
Choquet-Bruhat
and J. W.
York
, The Cauchy Problem, General Relativity and Gravitation
, edited by A.
Held
(Plenum
, New York
, 1980
).4.
Y.
Choquet-Bruhat
, J.
Isenberg
, and D.
Pollack
, “The constraint equations for the Einstein-scalar field system on compact manifolds
,” Classical Quantum Gravity
24
, 809
–828
(2007
).5.
E.
Hebey
, F.
Pacard
, and D.
Pollack
, “A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds
,” Commun. Math. Phys.
278
, 117
–132
(2008
).6.
J. L.
Kazdan
and F. W.
Warner
, “Scalar curvature and conformal deformation of Riemannian structure
,” J. Differ. Geom.
10
, 113
–134
(1975
).7.
A.
Lichnerowicz
, “L’intégration des équations relativistes et le problème des n corps
,” J. Math. Pures Appl.
23
, 37
–63
(1944
).8.
J.
Mawhin
and M.
Willem
, “Critical point theory and Hamiltonian system
,” in Applied Mathematical Sciences
(Springer-Verlag
, 1989
), Vol. 74.9.
M.
Struwe
, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
(Springer Berlin
, 2008
).10.
E.
Hebey
, Introduction à l’Analyse non Linéaire sur les Variétés
(Diderot Éditeur, Arts et Sciences
, 1997
).11.
L.
Ma
and J.
Wei
, “Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds
,” J. Math. Pures Appl.
99
, 174
–186
(2013
).12.
Q. A.
Ngô
and X.
Xu
, “Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds
,” Adv. Math.
230
, 2378
–2415
(2012
).13.
Q. A.
Ngô
and X.
Xu
, “Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the null case
,” Commun. Math. Phys.
334
, 193
–222
(2015
).14.
B.
Premoselli
, “Effective multiplicity for the Einstein-scalar field Lichnerowicz equation
,” Calc. Var. Partial Differential Equations
53
(1-2
), 29
–64
(2015
).15.
A.
Rauzy
, “Courbures scalaires des variétés d’invariant conforme négatif
,” Trans. Am. Math. Soc.
347
, 4729
–4745
(1995
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.