In this paper, we investigate the existence of a positive solution to the Einstein-scalar field Lichnerowicz equation on the compact Riemannian manifold; we use a variational method which allows us to derive a new existence result which depends on the spectral properties of an appropriate operator. A Kazdan and Warner type obstruction is also found in the specific case when the initial value for the scalar field is a constant in the standard unit sphere.

1.
M.
Benalili
, “
On the singular Q-curvature type equation
,”
J. Differ. Equations
254
(
2
),
547
598
(
2013
).
2.
P.
Baird
,
A.
Fardoun
, and
R.
Regbaoui
, “
Prescribed Q-curvature on manifolds of even dimension
,”
J. Geom. Phys.
59
,
221
233
(
2009
).
3.
Y.
Choquet-Bruhat
and
J. W.
York
,
The Cauchy Problem, General Relativity and Gravitation
, edited by
A.
Held
(
Plenum
,
New York
,
1980
).
4.
Y.
Choquet-Bruhat
,
J.
Isenberg
, and
D.
Pollack
, “
The constraint equations for the Einstein-scalar field system on compact manifolds
,”
Classical Quantum Gravity
24
,
809
828
(
2007
).
5.
E.
Hebey
,
F.
Pacard
, and
D.
Pollack
, “
A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds
,”
Commun. Math. Phys.
278
,
117
132
(
2008
).
6.
J. L.
Kazdan
and
F. W.
Warner
, “
Scalar curvature and conformal deformation of Riemannian structure
,”
J. Differ. Geom.
10
,
113
134
(
1975
).
7.
A.
Lichnerowicz
, “
L’intégration des équations relativistes et le problème des n corps
,”
J. Math. Pures Appl.
23
,
37
63
(
1944
).
8.
J.
Mawhin
and
M.
Willem
, “
Critical point theory and Hamiltonian system
,” in
Applied Mathematical Sciences
(
Springer-Verlag
,
1989
), Vol. 74.
9.
M.
Struwe
,
Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
(
Springer Berlin
,
2008
).
10.
E.
Hebey
,
Introduction à l’Analyse non Linéaire sur les Variétés
(
Diderot Éditeur, Arts et Sciences
,
1997
).
11.
L.
Ma
and
J.
Wei
, “
Stability and multiple solutions to Einstein-scalar field Lichnerowicz equation on manifolds
,”
J. Math. Pures Appl.
99
,
174
186
(
2013
).
12.
Q. A.
Ngô
and
X.
Xu
, “
Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds
,”
Adv. Math.
230
,
2378
2415
(
2012
).
13.
Q. A.
Ngô
and
X.
Xu
, “
Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the null case
,”
Commun. Math. Phys.
334
,
193
222
(
2015
).
14.
B.
Premoselli
, “
Effective multiplicity for the Einstein-scalar field Lichnerowicz equation
,”
Calc. Var. Partial Differential Equations
53
(
1-2
),
29
64
(
2015
).
15.
A.
Rauzy
, “
Courbures scalaires des variétés d’invariant conforme négatif
,”
Trans. Am. Math. Soc.
347
,
4729
4745
(
1995
).
You do not currently have access to this content.