We are concerned in this paper with the connection between the dynamics of a model related to nuclear magnetic resonance in Quantum Field Theory (QFT) and its classical counterpart known as the Maxwell-Bloch equations. The model in QFT is a model of quantum electrodynamics considering fixed spins interacting with the quantized electromagnetic field in an external constant magnetic field. This model is close to the common spin-boson model. The classical model goes back to Bloch [Phys. Rev. 70, 460 (1946)]. Our goal is not only to study the derivation of the Maxwell-Bloch equations but also to establish a semiclassical asymptotic expansion of arbitrary high order with control of the error terms of these standard nonlinear classical motion equations. This provides therefore quantum corrections of any order in powers of the semiclassical parameter of the Bloch equations. Besides, the asymptotic expansion for the photon number is also analyzed, and a law describing the photon number time evolution is written down involving the radiation field polarization. Since the quantum photon state Hilbert space (radiation field) is infinite dimensional, we are thus concerned in this article with the issue of semiclassical calculus in an infinite dimensional setting. In this regard, we are studying standard notions as Wick and anti-Wick quantizations, heat operator, Beals characterization theorem, and compositions of symbols in the infinite dimensional context which can have their own interest.

1.
Z.
Ammari
and
M.
Falconi
, “
Wigner measures approach to the classical limit of the Nelson model: Convergence of dynamics and ground state energy
,”
J. Stat. Phys.
157
(
2
),
330
362
(
2014
).
2.
Z.
Ammari
and
M.
Falconi
, “
Bohr’s correspondence principle for the renormalized Nelson model
,”
SIAM J. Math. Anal.
49
(
6
),
5031
5095
(
2017
).
3.
Z.
Ammari
and
F.
Nier
, “
Mean field limit for bosons and infinite dimensional phase-space analysis
,”
Ann. Henri Poincaré
9
(
8
),
1503
1574
(
2008
).
4.
L.
Amour
,
L.
Jager
, and
J.
Nourrigat
, “
On bounded Weyl pseudodifferential operators in Wiener spaces
,”
J. Funct. Anal.
269
,
2747
2812
(
2015
).
5.
L.
Amour
,
M.
Khodja
, and
J.
Nourrigat
, “
Approximative composition of Wick symbols and applications to the time dependent Hartree-Fock equation
,”
Asymptotic Anal.
85
(
3-4
),
229
248
(
2013
).
6.
L.
Amour
,
R.
Lascar
, and
J.
Nourrigat
, “
Beals characterization of pseudodifferential operators in Wiener spaces
,”
Appl. Math. Res. Express
2017
(
1
),
42
270
.
7.
L.
Amour
,
R.
Lascar
, and
J.
Nourrigat
, “
Weyl calculus in QED. I. The unitary group
,”
J. Math. Phys.
58
,
013501
(
2017
).
8.
L.
Amour
,
R.
Lascar
, and
J.
Nourrigat
, “
Weyl calculus in Wiener spaces and in QED
,” e-print arXiv:1610.06379 (to be published), in J.P.D.O.
9.
L.
Amour
and
J.
Nourrigat
, “
Hamiltonian systems and semiclassical dynamics for interacting spins in QED
,” preprint arXiv:1512.08429 (
2015
).
10.
D. M.
Appleby
, “
Husimi transform of an operator product
,”
J. Phys. A: Math. Gen.
33
(
21
),
3903
3915
(
2000
).
11.
A.
Arai
and
M.
Hirokawa
, “
On the existence and uniqueness of ground states of a generalized spin-boson model
,”
J. Funct. Anal.
151
(
2
),
455
503
(
1997
).
12.
V.
Bach
,
J.
Fröhlich
, and
I. M.
Sigal
, “
Quantum electrodynamics on confined nonrelativistic particles
,”
Adv. Math.
137
(
2
),
299
395
(
1998
).
13.
R.
Beals
, “
Characterization of pseudodifferential operators and applications
,”
Duke Math. J.
44
(
1
),
45
57
(
1977
).
14.
F. A.
Berezin
and
M. A.
Šubin
,
The Schrödinger Equation
(
Kluwer Academic Publishers Group
,
Dordrecht
,
1991
), Vol. 66, translated from the 1983 Russian edition, Mathematics and its Applications (Soviet Series).
15.
F.
Bloch
, “
Nuclear induction
,”
Phys. Rev.
70
,
460
473
(
1946
).
16.
C.
Cohen-Tannoudji
,
J.
Dupont-Roc
, and
G.
Grynberg
,
Processus d’Interaction Entre Photons et Atomes
(
EDP Sciences CNRS Éditions
,
2001
).
17.
M.
Combescure
and
D.
Robert
,
Coherent States and Applications in Mathematical Physics
, Theoretical and Mathematical Physics (
Springer
,
Dordrecht
,
2012
).
18.
M.
Correggi
and
M.
Falconi
, “
Effective potentials generated by field interaction in the quasi- classical limit
,”
Ann. Henri Poincaré
19
(
1
),
189
235
(
2018
).
19.
J.
Dereziński
and
C.
Gérard
, “
Asymptotic completeness in quantum field theory: Massive Pauli-Fierz Hamiltonians
,”
Rev. Math. Phys.
11
(
4
),
383
450
(
1999
).
20.
F.
Engelke
, “
Virtual photons in magnetic resonance
,”
Concepts Magn. Reson., Part A
36A
(
5
),
266
339
(
2010
).
21.
G. B.
Folland
,
Harmonic Analysis in Phase Space
, Annals of Mathematics Studies (
Princeton University Press
,
Princeton, NJ
,
1989
), Vol. 122.
22.
R. L.
Frank
and
G.
Zhou
, “
Derivation of an effective evolution equation for a strongly coupled polaron
,”
Anal. PDE
10
(
2
),
379
422
(
2017
).
23.
J.
Fröhlich
, “
On the infrared problem in a model of scalar electrons and massless scalar bosons
,”
Ann. Inst. H. Poincaré Sect. A (N.S.)
19
,
1
103
(
1973
).
24.
C.
Gérard
, “
On the existence of ground states for massless Pauli-Fierz Hamiltonians
,”
Ann. Henri Poincaré
1
,
443
459
(
2000
).
25.
J.
Ginibre
,
F.
Nironi
, and
G.
Velo
, “
Partially classical limit of the Nelson model
,”
Ann. Henri Poincaré
7
(
1
),
21
43
(
2006
).
26.
R. J.
Glauber
, “
Coherent and incoherent states of the radiation field
,”
Phys.Rev.
131
(
6
),
2766
(
1963
).
27.
J.
Glimm
and
A.
Jaffe
,
Quantum Physics: A Functional Integral Point of View
, 2nd ed. (
Springer-Verlag
,
New York
,
1987
), ISBN: 0-387-96476-2.
28.
L.
Gross
, “
Existence and uniqueness of physical ground states
,”
J. Funct. Anal.
10
,
52
109
(
1972
).
29.
L.
Gross
, “
The relativistic polaron without cutoffs
,”
Commun. Math. Phys.
31
,
25
73
(
1973
).
30.
L.
Gross
, “
Measurable functions on Hilbert space
,”
Trans. Am. Math. Soc.
105
,
372
390
(
1962
).
31.
L.
Gross
, “
Abstract Wiener spaces
,” in
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability
(
University of California Press
,
Berkeley, CA
,
1965
), Vol. 2, pp.
31
42
.
32.
L.
Gross
, “
Abstract Wiener measure and infinite dimensional potential theory
,” in
Lectures in Modern Analysis and Applications II
, Lecture Notes in Math (
Springer
,
1970
), Vol. 140, pp.
84
116
.
33.
L.
Gross
, “
Potential theory on Hilbert space
,”
J. Funct. Anal.
1
,
123
181
(
1967
).
34.
K.
Hepp
, “
The classical limit for quantum mechanical correlation functions
,”
Commun. Math. Phys.
35
,
265
277
(
1974
).
35.
L.
Hörmander
,
The Analysis of Linear Partial Differential Operators
(
Springer
,
1985
), Vol. III.
36.
M.
Hübner
and
H.
Spohn
, “
Spectral properties of the spin-boson Hamiltonian
,”
Ann. l’I. H. P., Sect. A, tome
62
(
3
),
289
323
(
1995
).
37.
L.
Jager
, “
Stochastic extensions of symbols in Wiener spaces and heat operator
,” e-print arXiv:1607.02253 (
2016
).
38.
S.
Janson
,
Gaussian Hilbert Spaces
, Cambridge Tracts in Mathematics (
Cambridge University Press
,
1997
), Vol. 129.
39.
J.
Jeener
and
F.
Henin
, “
A presentation of pulsed nuclear magnetic resonance with full quantization of the radio frequency magnetic field
,”
J. Chem. Phys.
116
,
8036
8047
(
2002
).
40.
P.
Krée
and
R.
Ra̧czka
, “
Kernels and symbols of operators in quantum field theory
,”
Ann. l’I. H. P. Sect., A
28
(
1
),
41
73
(
1978
).
41.
H. H.
Kuo
,
Gaussian Measures in Banach Spaces
, Lecture Notes in Mathematics (
Springer
,
Berlin; New York
,
1975
), Vol. 463.
42.
B.
Lascar
, “
Une classe d’opérateurs elliptiques du second ordre sur un espace de Hilbert
,”
J. Funct. Anal.
35
(
3
),
316
343
(
1980
).
43.
N.
Lerner
, “
Metrics on the phase space and non-selfadjoint pseudo-differential operators
,” in
Pseudo-Differential Operators: Theory and Applications
(
Birkhäuser Verlag
,
Basel
,
2010
), Vol. 3.
44.
N.
Leopold
and
P.
Pickl
, “
Derivation of the Maxwell-Schrödinger equations from the Pauli-Fierz Hamiltonian
,” preprint arXiv:1609.01545 (
2016
).
45.
N.
Leopold
and
P.
Pickl
, “
Mean-field limits of particles in interaction with quantized radiation fields
,” preprint arXiv:1806.10843 (
2018
).
46.
E.
Lieb
and
M.
Loss
, “
A note on polarization vectors in quantum electrodynamics
,”
Commun. Math. Phys.
252
(
1-3
),
477
483
(
2004
).
47.
P. A.
Meyer
,
Quantum Probability for Probabilists
, Lecture Notes in Mathematics (
Springer
,
Berlin, Heidelberg
,
1991
), Vol. 1538.
48.
M. M.
Mizrahi
, “
On the semiclassical expansion in quantum mechanics for arbitrary Hamiltonians
,”
J. Math. Phys.
18
(
34
),
786
790
(
1977
).
49.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics
(
Academic Press
,
New York, London
,
1978
).
50.
F. A.
Reuse
,
Electrodynamique et Optique Quantiques
(
Presses Polytechniques et Universitaires Romandes
,
Lausanne
,
2007
).
51.
D.
Robert
,
Autour de l’Approximation Semi-Classique
, Progress in Mathematics (
Birkhäuser Boston, Inc.
,
Boston, MA
,
1987
), Vol. 68.
52.
R. H.
Romero
and
G. A.
Aucar
, “
QED approach to the nuclear spin-spin coupling tensor
,”
Phys. Rev. A
65
,
053411
(
2002
).
53.
B.
Simon
,
The P(φ)2 Euclidean (Quantum) Field Theory
, Princeton Series in Physics (
Princeton University Press
,
1974
).
54.
H.
Spohn
, “
Ground state(s) of the spin-boson Hamiltonian
,”
Commun. Math. Phys.
123
,
277
304
(
1989
).
55.
H.
Spohn
,
Dynamics of Charged Particles and Their Radiation Field
(
Cambridge University Press
,
Cambridge
,
2004
).
56.
A.
Unterberger
, “
Les opérateurs métadifférentiels
,” in
Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory
, Lecture Notes in Physics (
Springer
,
Berlin, New York
,
1980
), Vol. 126, pp.
205
241
.
57.
M.
Zworski
,
Semiclassical Analysis
, Graduate Studies in Mathematics (
American Mathematical Society
,
Providence, RI
,
2012
), Vol. 138.
You do not currently have access to this content.