We study various direct and inverse spectral problems for the one-dimensional Schrödinger equation with distributional potential and boundary conditions containing the eigenvalue parameter.

1.
S.
Albeverio
,
P.
Binding
,
R.
Hryniv
, and
Ya.
Mykytyuk
, “
Inverse spectral problems for coupled oscillating systems
,”
Inverse Probl.
23
(
3
),
1181
1200
(
2007
).
2.
S.
Albeverio
,
F.
Gesztesy
,
R.
Høegh-Krohn
, and
H.
Holden
,
Solvable Models in Quantum Mechanics
(
AMS Chelsea Publishing
,
Providence, RI
,
2005
).
3.
S.
Albeverio
and
P.
Kurasov
,
Singular Perturbations of Differential Operators: Solvable Schrödinger Type Operators
(
Cambridge University Press
,
Cambridge
,
2000
).
4.
R. Kh.
Amirov
,
A. S.
Ozkan
, and
B.
Keskin
, “
Inverse problems for impulsive Sturm–Liouville operator with spectral parameter linearly contained in boundary conditions
,”
Integral Transforms Spec. Funct.
20
(
7-8
),
607
618
(
2009
).
5.
P. A.
Binding
,
P. J.
Browne
, and
B. A.
Watson
, “
Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. I
,”
Proc. Edinburgh Math. Soc.(2)
45
(
3
),
631
645
(
2002
).
6.
P. A.
Binding
,
P. J.
Browne
, and
B. A.
Watson
, “
Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. II
,”
J. Comput. Appl. Math.
148
(
1
),
147
168
(
2002
).
7.
J.
Eckhardt
,
F.
Gesztesy
,
R.
Nichols
, and
G.
Teschl
, “
Weyl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials
,”
Opuscula Math.
33
(
3
),
467
563
(
2013
); e-print arXiv:1208.4677.
8.
J.
Eckhardt
,
F.
Gesztesy
,
R.
Nichols
, and
G.
Teschl
, “
Inverse spectral theory for Sturm–Liouville operators with distributional potentials
,”
J. London Math. Soc. (2)
88
(
3
),
801
828
(
2013
); e-print arXiv:1210.7628.
9.
G.
Freiling
and
V.
Yurko
, “
Inverse problems for Sturm–Liouville equations with boundary conditions polynomially dependent on the spectral parameter
,”
Inverse Probl.
26
(
5
),
055003
(
2010
).
10.
C. T.
Fulton
, “
Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions
,”
Proc. R. Soc. Edinburgh, Sect. A
77
(
3-4
),
293
308
(
1977
).
11.
C. T.
Fulton
, “
Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions
,”
Proc. R. Soc. Edinburgh, Sect. A
87
(
1-2
),
1
34
(
1980
).
12.
A.
Goriunov
and
V.
Mikhailets
, “
Regularization of singular Sturm–Liouville equations
,”
Methods Funct. Anal. Topol.
16
(
2
),
120
130
(
2010
); e-print arXiv:1002.4371.
13.
N. J.
Guliyev
, “
Inverse eigenvalue problems for Sturm–Liouville equations with spectral parameter linearly contained in one of the boundary conditions
,”
Inverse Probl.
21
(
4
),
1315
1330
(
2005
); e-print arXiv:0803.0566.
14.
N. J.
Guliyev
, “
Essentially isospectral transformations and their applications
,” preprint arXiv:1708.07497.
15.
N. J.
Guliyev
, “
On two-spectra inverse problems
,” preprint arXiv:1803.02567.
16.
N. J.
Guliyev
, “
On extensions of symmetric operators
,”
Oper. Matrices
(to be published); e-print arXiv:1807.11865.
17.
M.
Homa
and
R.
Hryniv
, “
Comparison and oscillation theorems for singular Sturm–Liouville operators
,”
Opusc. Math.
34
(
1
),
97
113
(
2014
).
18.
R. O.
Hryniv
and
Ya. V.
Mykytyuk
, “
Inverse spectral problems for Sturm–Liouville operators with singular potentials
,”
Inverse Probl.
19
(
3
),
665
684
(
2003
); e-print arXiv:math/0211247.
19.
R. O.
Hryniv
and
Ya. V.
Mykytyuk
, “
Inverse spectral problems for Sturm–Liouville operators with singular potentials. II. Reconstruction by two spectra
,” in
Functional Analysis and Its Applications
(
Elsevier
,
Amsterdam
,
2004
), pp.
97
114
; e-print arXiv:math/0301193.
20.
R. O.
Hryniv
and
Ya. V.
Mykytyuk
, “
Half-inverse spectral problems for Sturm–Liouville operators with singular potentials
,”
Inverse Probl.
20
(
5
),
1423
1444
(
2004
); e-print arXiv:math/0312184.
21.
Ch. G.
Ibadzadeh
and
I. M.
Nabiev
, “
Reconstruction of the Sturm–Liouville operator with nonseparated boundary conditions and a spectral parameter in the boundary condition
,”
Ukraïn. Mat. Z.
69
(
9
),
1217
1223
(
2017
) (in Russian)
Ch. G.
Ibadzadeh
and
I. M.
Nabiev
, [
Ukrainian Math. J.
69
(
9
),
1416
1423
(
2018
) (in English)].
22.
A.
Kostenko
and
M.
Malamud
, “
1-D Schrödinger operators with local point interactions: A review
,” in
Spectral Analysis, Differential Equations and Mathematical Physics
(
American Mathematical Society
,
Providence, RI
,
2013
), pp.
235
262
; e-print arXiv:1303.4055.
23.
N. Dzh.
Kuliev
, “
Inverse problems for the Sturm–Liouville equation with a spectral parameter in the boundary condition
,”
Dokl. Nats. Akad. Nauk Azerb.
60
(
3-4
),
10
16
(
2004
) (in Russian).
24.
Kh. R.
Mamedov
and
F. A.
Cetinkaya
, “
Eigenparameter dependent inverse boundary value problem for a class of Sturm–Liouville operator
,”
Bound. Value Probl.
2014
,
194
.
25.
K. A.
Mirzoev
, “
Sturm–Liouville operators
,”
Tr. Mosk. Mat. Obs.
75
(
2
),
335
359
(
2014
) (in Russian)
K. A.
Mirzoev
, [
Trans. Moscow Math. Soc.
75
,
281
299
(
2014
) (in English)].
26.
A. M.
Savchuk
, “
On the eigenvalues and eigenfunctions of the Sturm–Liouville operator with a singular potential
,”
Mat. Zametki
69
(
2
),
277
285
(
2001
) (in Russian)
A. M.
Savchuk
, [
Math. Notes
69
(
1-2
),
245
252
(
2001
) (in English)].
27.
A. M.
Savchuk
and
A. A.
Shkalikov
, “
Sturm–Liouville operators with singular potentials
,”
Mat. Zametki
66
(
6
),
897
912
(
1999
) (in Russian)
A. M.
Savchuk
and
A. A.
Shkalikov
, [
Math. Notes
66
(
5-6
),
741
753
(
1999
) (in English)].
28.
A. M.
Savchuk
and
A. A.
Shkalikov
, “
Sturm–Liouville operators with distribution potentials
,”
Tr. Mosk. Mat. Obs.
64
,
159
212
(
2003
) (in Russian)
A. M.
Savchuk
and
A. A.
Shkalikov
, [
Trans. Moscow Math. Soc.
64
,
143
192
(
2003
) (in English)]; e-print arXiv:math/0301077.
29.
A. M.
Savchuk
and
A. A.
Shkalikov
, “
Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra
,”
Russ. J. Math. Phys.
12
(
4
),
507
514
(
2005
).
30.
A. A.
Shkalikov
and
Zh.
Ben Amara
, “
Oscillation theorems for Sturm–Liouville problems with distribution potentials
,”
Vestnik Moskov. Univ. Ser. I: Mat. Mekh.
69
(
3
),
43
49
(
2009
) (in Russian)
A. A.
Shkalikov
and
Zh.
Ben Amara
, [
Moscow Univ. Math. Bull.
64
(
3
),
132
137
(
2009
) (in English)].
You do not currently have access to this content.