We show that finite-dimensional order unit spaces equipped with a continuous sequential product as defined by Gudder and Greechie are homogeneous and self-dual. As a consequence of the Koecher-Vinberg theorem, these spaces therefore correspond to Euclidean Jordan algebras. We remark on the significance of this result in the context of reconstructions of quantum theory. In particular, we show that sequential product spaces must be C*-algebras when their vector space tensor product is also a sequential product space (in the parlance of operational theories, when the space “allows a local composite”). We also show that sequential product spaces in infinite dimension correspond to JB-algebras when a few additional conditions are satisfied. Finally, we remark on how changing the axioms of the sequential product might lead to a new characterization of homogeneous cones.

1.
P.
Jordan
,
J. v.
Neumann
, and
E.
Wigner
, “
On an algebraic generalization of the quantum mechanical formalism
,”
Ann. Math.
35
,
29
64
(
1934
).
2.
M.
Koecher
, “
Positivitatsbereiche im Rn
,”
Am. J. Math.
79
,
575
596
(
1957
).
3.
L.
Hardy
, “
Reconstructing quantum theory
,” in
Quantum Theory: Informational Foundations and Foils
(
Springer
,
2016
), pp.
223
248
.
4.
J.
van de Wetering
, “
An effect-theoretic reconstruction of quantum theory
,” preprint arXiv:1801.05798 (
2018
).
5.
J. H.
Selby
,
C. M.
Scandolo
, and
B.
Coecke
, “
Reconstructing quantum theory from diagrammatic postulates
,” preprint arXiv:1802.00367 (
2018
).
6.
H.
Barnum
,
M. P.
Müller
, and
C.
Ududec
, “
Higher-order interference and single-system postulates characterizing quantum theory
,”
New J. Phys.
16
,
123029
(
2014
).
7.
J.
Gunson
, “
On the algebraic structure of quantum mechanics
,”
Commun. Math. Phys.
6
,
262
285
(
1967
).
8.
S.
Tull
, “
A categorical reconstruction of quantum theory
,” preprint arXiv:1804.02265 (
2016
).
9.
P. A.
Höhn
, “
Toolbox for reconstructing quantum theory from rules on information acquisition
,”
Quantum
1
,
38
(
2017
).
10.
G.
Chiribella
,
G. M.
D’Ariano
, and
P.
Perinotti
, “
Informational derivation of quantum theory
,”
Phys. Rev. A
84
,
012311
(
2011
).
11.
S.
Gudder
and
R.
Greechie
, “
Sequential products on effect algebras
,”
Rep. Math. Phys.
49
,
87
111
(
2002
).
12.
J.
Barrett
, “
Information processing in generalized probabilistic theories
,”
Phys. Rev. A
75
,
032304
(
2007
).
13.
L.
Weihua
and
W.
Junde
, “
A uniqueness problem of the sequence product on operator effect algebra E(H)
,”
J. Phys. A: Math. Theor.
42
,
185206
(
2009
).
14.
S.
Gudder
and
F.
Latrémolière
, “
Characterization of the sequential product on quantum effects
,”
J. Math. Phys.
49
,
052106
(
2008
).
15.
A.
Westerbaan
and
B.
Westerbaan
, “
A universal property for sequential measurement
,”
J. Math. Phys.
57
,
092203
(
2016
).
16.
J.
van de Wetering
, “
Three characterisations of the sequential product
,”
J. Math. Phys.
59
(
8
),
082202
(
2018
).
17.
P.
Jordan
,
Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik
(
Weidmann
,
1933
).
18.
H.
Barnum
and
A.
Wilce
, “
Local tomography and the Jordan structure of quantum theory
,”
Found. Phys.
44
,
192
212
(
2014
).
19.
L.
Masanes
,
M. P.
Mueller
,
D.
Perez-Garcia
, and
R.
Augusiak
, “
Entanglement and the three-dimensionality of the Bloch ball
,”
J. Math. Phys.
55
,
122203
(
2014
).
20.
H.
Hanche-Olsen
, “
JB-algebras with tensor products are C*-algebras
,” in
Operator Algebras and Their Connections with Topology and Ergodic Theory
(
Springer
,
1985
), pp.
223
229
.
21.
L.
Hardy
, “
Quantum theory from five reasonable axioms
,” preprint arXiv:quant-ph/0101012 (
2001
).
22.
E. M.
Alfsen
and
F. W.
Shultz
,
State Spaces of Operator Algebras: Basic Theory, Orientations, and C*-products
(
Springer Science & Business Media
,
2012
).
23.
E. M.
Alfsen
and
F. W.
Shultz
,
Geometry of State Spaces of Operator Algebras
(
Springer Science & Business Media
,
2012
).
24.
M.
Ito
and
B. F.
Lourenço
, “
The p-cones in dimension n ≥ 3 are not homogeneous when p ≠ 2
,”
Linear Algebra Appl.
533
,
326
335
(
2017
).
25.
S.
Gudder
and
R.
Greechie
, “
Uniqueness and order in sequential effect algebras
,”
Int. J. Theor. Phys.
44
,
755
770
(
2005
).
26.
R. V.
Kadison
,
A Representation Theory for Commutative Topological Algebra
(
American Mathematical Society
,
1951
), Vol. 7.
27.
J.
Faraut
and
A.
Korányi
,
Analysis on Symmetric Cones
(
Clarendon Press Oxford
,
1994
).
28.
K.
Cho
,
B.
Jacobs
,
B.
Westerbaan
, and
A.
Westerbaan
, “
An introduction to effectus theory
,” preprint arXiv:1512.05813 (
2015
).
29.
K.
Cho
,
B.
Jacobs
,
B.
Westerbaan
, and
B.
Westerbaan
, “
Quotient-comprehension chains
,” in
Electronic Proceedings in Theoretical Computer Science
,
Proceedings of the 12th International Workshop on Quantum Physics and Logic, Oxford, U.K., July 15–17, 2015
, edited by
C.
Heunen
,
P.
Selinger
, and
J.
Vicary
(
Open Publishing Association
,
2015
), Vol. 195, pp.
136
147
.
30.
K.
McCrimmon
, “
A general theory of Jordan rings
,”
Proc. Natl. Acad. Sci. U. S. A.
56
,
1072
1079
(
1966
).
31.
B.
Westerbaan
, “
Dagger and dilations in the category of von Neumann algebras
,” Ph.D. thesis,
Radboud Universiteit Nijmegen
,
2018
.
32.
B.
Jacobs
and
A.
Westerbaan
, “
Distances between states and between predicates
,” preprint arXiv:1711.09740 (
2017
).
33.
E. B.
Vinberg
, “
Theory of homogeneous convex cones
,”
Trans. Moscow Math. Soc.
12
,
303
368
(
1967
).
34.
C. B.
Chua
, “
Relating homogeneous cones and positive definite cones via T-algebras
,”
SIAM J. Control
14
,
500
506
(
2003
).
35.
B.
Westerbaan
, “
Sequential product on effect logics
,” M.S. thesis,
Radboud University Nijmegen
,
2013
.
You do not currently have access to this content.