Time evolution of squeezed coherent states for a quantum parametric oscillator with the most general self-adjoint quadratic Hamiltonian is found explicitly. For this, we use the unitary displacement and squeeze operators in coordinate representation and the evolution operator obtained by the Wei-Norman Lie algebraic approach. Then, we analyze squeezing properties of the wave packets according to the complex parameter of the squeeze operator and the time-variable parameters of the Hamiltonian. As an application, we construct all exactly solvable generalized quantum oscillator models classically corresponding to a driven simple harmonic oscillator. For each model, defined according to the frequency modification in position space, we describe explicitly the squeezing and displacement properties of the wave packets. This allows us to see the exact influence of all parameters and make a basic comparison between the different models.

1.
E.
Schrödinger
, “
Der stetige aubergang von der mikro-zur makromechanik
,”
Naturwissenschaften
14
,
664
666
(
1926
).
2.
E. H.
Kennard
, “
Zur quantenmechanik einfacher bewegungstypen
,”
Z. Phys.
44
,
326
352
(
1927
).
3.
R. J.
Glauber
, “
Coherent and incoherent states of the radiation field
,”
Phys. Rev.
131
,
2766
2788
(
1963
).
4.
J. R.
Klauder
, “
The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers
,”
Ann. Phys.
11
,
123
168
(
1960
).
5.
J. R.
Klauder
and
E. C. G.
Sudarshan
,
Fundamentals of Quantum Optics
(
W. A. Benjamin
,
NY
,
1968
).
6.
E. C. G.
Sudarshan
, “
Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams
,”
Phys. Rev. Lett.
10
,
277
(
1963
).
7.
D.
Stoler
, “
Equivalence classes of minimum uncertainty packets
,”
Phys. Rev. D
1
(
12
),
3217
3219
(
1970
).
8.
D.
Stoler
, “
Generalized coherent states
,”
Phys. Rev. D
4
(
8
),
2309
2312
(
1971
).
9.
H. P.
Yuen
, “
Two-photon coherent states of the radiation field
,”
Phys. Rev. A
13
(
6
),
2226
2243
(
1976
).
10.
R. W.
Henry
, “
A squeezed-state primer
,”
Am. J. Phys.
56
(
4
),
318
328
(
1988
).
11.
D. A.
Trifonov
, “
Generalized intelligent states and squeezing
,”
J. Math. Phys.
35
(
5
),
2297
2308
(
1994
).
12.
M. M.
Nieto
, “
The discovery of squeezed states - in 1927
,” e-print arXiv:quant-ph/9708012v1 (
1997
).
13.
M. M.
Nieto
and
D. R.
Truax
, “
Squeezed states for general systems
,” e-print arXiv:hep-th/9308029v1 (
1993
).
14.
V. V.
Dodonov
, “
‘Nonclassical’ states in quantum optics: A ‘squeezed’ review of the first 75 years
,”
J. Opt. B: Quantum Semiclassical Opt.
4
(
1
),
R1
R33
(
2002
).
15.
V. V.
Dodonov
and
V. I.
Man’ko
,
Theory of Nonclassical States of Ligth
(
Taylor & Francis
,
London
,
2003
).
16.
I. A.
Malkin
and
V. I.
Manko
,
Dynamical Symmetries and Coherent States of Quantum Systems
(
Nauka
,
Moscow
,
1979
).
17.
A.
Perelomov
,
Generalized Goherent States and Their Applications
(
Springer-Verlag
,
1986
).
18.
M.
Hillery
, “
Amplitude-squared squeezing of the electromagnetic field
,”
Phys. Rev. A
36
(
8
),
3796
3802
(
1987
).
19.
D. F.
Walls
, “
Squeezed states of light
,”
Nature
306
,
141
146
(
1983
).
20.
G.
Breitenbach
,
S.
Schiller
, and
J.
Mlynek
, “
Measurement of the quantum states of squeezed light
,”
Nature
387
,
471
475
(
1997
).
21.
M. M.
Nieto
and
L. M.
Simmons
, Jr.
, “
Coherent states for general potentials. I. Formalism
,”
Phys. Rev. D
20
,
1321
(
1979
).
22.
M. M.
Nieto
, “
Functional forms for the squeeze and the time-displacement operators
,”
Quantum Semiclassical Opt.
8
,
1061
(
1996
).
23.
M. M.
Nieto
, “
Displaced and squeezed number states
,”
Phys. Lett. A
229
,
135
143
(
1997
).
24.
C. F.
Lo
, “
How does a squeezed state of a general driven time-dependent oscillator evolve?
,”
Phys. Scr.
42
,
389
392
(
1990
).
25.
C. F.
Lo
, “
Quantum mechanics of a general driven time-dependent oscillator
,”
Il Nuovo Cimento D
13
(
10
),
1279
(
1991
).
26.
H. R.
Lewis
, Jr.
and
W. B.
Riesenfeld
, “
An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field
,”
J. Math. Phys.
10
,
1458
(
1969
).
27.
J. R.
Choi
and
D. W.
Kim
, “
Squeezed states for the general time-dependent harmonic oscillator with and without a singularity
,”
J. Korean Phys. Soc.
45
(
6
),
1426
1434
(
2004
).
28.
J. R.
Choi
, “
Coherent and squeezed states of light in linear media with time-dependent parameters by Lewis-Riesenfeld invariant operator method
,”
J. Phys. B: At., Mol. Opt. Phys.
39
(
3
),
669
684
(
2006
).
29.
J. R.
Choi
and
I. H.
Nahm
, “
SU(1,1) Lie algebra applied to the general time-dependent quadratic Hamiltonian system
,”
Int. J. Theor. Phys.
46
(
1
),
1
(
2007
).
30.
J.
Wei
and
E.
Norman
, “
Lie algebraic solution of linear differential equations
,”
J. Math. Phys.
4
,
575
(
1963
).
31.
Ş. A.
Büyükaş
k
ı and
Z.
Çayiç
, “
Exactly solvable Hermite, Laguerre, and Jacobi type quantum parametric oscillators
,”
J. Math. Phys.
57
,
122107
(
2016
).
32.
Ş. A.
Büyükaş
k
ı, “
Squeezing and resonance in a generalized Caldirola-Kanai type quantum parametric oscillator
,”
J. Math. Phys.
59
,
082104
(
2018
).
You do not currently have access to this content.