The limiting dynamics of stochastic 2D nonautonomous g-Navier-Stokes equations defined on a sequence of expanding domains are investigated, where the limiting domain is unbounded. By generalizing the energy-equation method, we show that the sequence of expanding cocycles is weakly equicontinuous and strongly equiasymptotically compact, which lead to both existence and upper semicontinuity of the null-expansion of the corresponding random attractor when the bounded domain approaches to the unbounded domain.

1.
C. T.
Anh
and
D. T.
Quyet
, “
Long-time behavior for 2D non-autonomous g-Navier-Stokes equations
,”
Ann. Polon. Math.
103
,
277
302
(
2012
).
2.
J. P.
Aubin
, “
Un théorème de compacité
,”
C. R. Acad. Sci. Paris
256
,
5012
5014
(
1963
).
3.
L.
Arnold
,
Random Dynamical Systems
(
Springer-Verlag
,
Berlin
,
1998
).
4.
J. M.
Arrieta
and
A. N.
Carvalho
, “
Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain
,”
J. Differ. Equations
199
,
143
178
(
2004
).
5.
H. O.
Bae
and
J.
Roh
, “
Existence of solutions of the g-Navier-Stokes equations
,”
Taiwan. J. Math.
8
,
85
102
(
2004
).
6.
J. M.
Ball
, “
Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations
,”
J. Nonlinear Sci.
7
,
475
502
(
1997
).
7.
Z.
Brzeźniak
,
T.
Caraballo
,
J. A.
Langa
,
Y.
Li
,
G.
Łukaszewiczd
, and
J.
Real
, “
Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains
,”
J. Differ. Equations
255
,
3897
3919
(
2013
).
8.
Z.
Brzeźniak
and
Y.
Li
, “
Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains
,”
Trans. Am. Math. Soc.
358
,
5587
5629
(
2006
).
9.
T.
Caraballo
,
G.
Łukaszewiczd
, and
J.
Real
, “
Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains
,”
C. R. Math. Acad. Sci. Paris
342
,
263
268
(
2006
).
10.
I.
Chueshov
,
Monotone Random Systems Theory and Applications
(
Springer Science & Business Media
,
2002
), Vol. 1779.
11.
H. Y.
Cui
,
J. A.
Langa
, and
Y. R.
Li
, “
Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems
,”
J. Dyn. Differ. Equations
30
,
1873
1898
(
2018
).
12.
D. S.
Gong
,
H. T.
Song
, and
C. K.
Zhong
, “
Attractors for nonautonomous two-dimensional space periodic Navier-Stokes equations
,”
J. Math. Phys.
50
,
102706
(
2009
).
13.
B. L.
Guo
and
C. X.
Guo
, “
The convergence for non-Newtonian fluids to Navier-Stokes equation in 3D domain
,”
Int. J. Dyn. Syst. Differ. Equations
2
,
129
138
(
2009
).
14.
C. X.
Guo
,
B. L.
Guo
, and
Y. F.
Guo
, “
Random attractors of stochastic non-Newtonian fluids on unbounded domain
,”
Stoch. Dyn.
14
,
1350008
(
2014
).
15.
C. X.
Guo
and
B. L.
Guo
, “
H1-random attractors of stochastic monopolar non-Newtonian fluids with multiplicative noise
,”
Commun. Math. Sci.
12
,
1565
1578
(
2014
).
16.
C. X.
Guo
,
C. Y.
Li
, and
Y. Q.
Han
, “
Dynamical behaviors of stochastic Hasegawa-Mima equation in torus
,”
J. Math. Phys.
59
,
021508
(
2018
).
17.
D.
Iftimie
and
G.
Raugel
, “
Some results on the Navier-Stokes equations in thin 3D domains
,”
J. Differ. Equations
169
,
281
331
(
2001
).
18.
J. P.
Jiang
and
Y. R.
Hou
, “
The global attractor of g-Navier-Stokes equations with linear dampness on R2.
,”
Appl. Math. Comput.
215
,
1068
1076
(
2009
).
19.
J. P.
Jiang
and
Y. R.
Hou
, “
Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains
,”
Appl. Math. Mech.
31
,
697
708
(
2010
).
20.
J. P.
Jiang
,
Y. R.
Hou
, and
X. X.
Wang
, “
Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with linear dampness
,”
Appl. Math. Mech.
32
,
151
166
(
2011
).
21.
J. P.
Jiang
and
X. X.
Wang
, “
Global attractor of 2D autonomous g-Navier-Stokes equations
,”
Appl. Math. Mech.
34
,
385
394
(
2013
).
22.
P. E.
Kloeden
and
J.
Simsen
, “
Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents
,”
J. Math. Anal. Appl.
425
,
911
918
(
2015
).
23.
M.
Kwak
,
H.
Kwean
, and
J.
Roh
, “
The dimension of attractor of the 2D g-Navier-Stokes equations
,”
J. Math. Anal. Appl.
315
,
436
461
(
2006
).
24.
J. A.
Langa
,
G.
Łukaszewicz
, and
J.
Real
, “
Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains
,”
Nonlinear Anal.
66
,
735
749
(
2007
).
25.
D. S.
Li
and
L.
Shi
, “
Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay
,”
J. Math. Phys.
59
,
032703
(
2018
).
26.
D. S.
Li
,
B. X.
Wang
, and
X. H.
Wang
, “
Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains
,”
J. Differ. Equations
262
,
1575
1602
(
2017
).
27.
F. Z.
Li
,
Y. R.
Li
, and
R. H.
Wang
, “
Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise
,”
Discrete Contin. Dyn. Syst.
38
,
3663
3685
(
2018
).
28.
Y. R.
Li
,
A. H.
Gu
, and
J.
Li
, “
Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations
,”
J. Differ. Equations
258
,
504
534
(
2015
).
29.
Y. R.
Li
and
B. L.
Guo
, “
Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations
,”
J. Differ. Equations
245
,
1775
1800
(
2008
).
30.
Y. R.
Li
,
L. B.
She
, and
R. H.
Wang
, “
Asymptotically autonomous dynamics for parabolic equation
,”
J. Math. Anal. Appl.
459
,
1106
1123
(
2018
).
31.
Y. R.
Li
,
L. B.
She
, and
J. Y.
Yin
, “
Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE
,”
Discrete Contin. Dyn. Syst. Ser. B
23
,
1535
1557
(
2018
).
32.
Y. R.
Li
and
J. Y.
Yin
, “
A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations
,”
Discrete Contin. Dyn. Syst., Ser. B
21
,
1203
1223
(
2016
).
33.
D. T.
Quyet
, “
Pullback attractors for strong solutions of 2D non-autonomous g-Navier-Stokes equations
,”
Acta Math. Vietnam.
40
,
637
651
(
2015
).
34.
G.
Raugel
and
G. R.
Sell
, “
Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions
,”
J. Am. Math. Soc.
6
,
503
568
(
1993
).
35.
G.
Raugel
and
G. R.
Sell
, “
Navier-Stokes equations in thin 3D domains III: Existence of a global attractor
,”
Turbul. Fluid Flows
55
,
137
163
(
1993
).
36.
R.
Rosa
, “
The global attractor for the 2D Navier-Stokes flow on some unbounded domains
,”
Nonlinear Anal.
32
,
71
85
(
1998
).
37.
J.
Roh
, “
g-Navier-Stokes equations
,” Ph. D. thesis,
University of Minnesota
,
2001
.
38.
J.
Roh
, “
Dynamics of the g-Navier-Stokes equations
,”
J. Differ. Equations
211
,
452
484
(
2005
).
39.
B. X.
Wang
, “
Asymptotic behavior of stochastic wave equations with critical exponents on R3.
,”
Trans. Am. Math. Soc.
363
,
3639
3663
(
2011
).
40.
B. X.
Wang
, “
Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems
,”
J. Differ. Equations
253
,
1544
1583
(
2012
).
41.
B. X.
Wang
, “
Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains
,”
Electron J. Differential Equations
59
,
1
18
(
2012
).
42.
S. L.
Wang
and
Y. R.
Li
, “
Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations
,”
Physica D
382-383
,
46
57
(
2018
).
43.
X.
Wang
and
S.
Li
, “
Pullback attractors for non-autonomous 2D Navier-Stokes equations with linear damping in some unbounded domains
,”
Acta Math. Sci. Ser. A Chin. Ed.
29
,
873
881
(
2009
).
44.
C. D.
Zhao
, “
Pullback asymptotic behavior of solutions for a non-autonomous non-Newtonian fluid on two-dimensional unbounded domains
,”
J. Math. Phys.
53
,
122702
(
2012
).
45.
W. Q.
Zhao
and
Y. R.
Li
, “
Asymptotic behavior of two-dimensional stochastic magneto-hydrodynamics equations with additive noises
,”
J. Math. Phys.
52
,
072701
(
2011
).
You do not currently have access to this content.