The limiting dynamics of stochastic 2D nonautonomous g-Navier-Stokes equations defined on a sequence of expanding domains are investigated, where the limiting domain is unbounded. By generalizing the energy-equation method, we show that the sequence of expanding cocycles is weakly equicontinuous and strongly equiasymptotically compact, which lead to both existence and upper semicontinuity of the null-expansion of the corresponding random attractor when the bounded domain approaches to the unbounded domain.
REFERENCES
1.
C. T.
Anh
and D. T.
Quyet
, “Long-time behavior for 2D non-autonomous g-Navier-Stokes equations
,” Ann. Polon. Math.
103
, 277
–302
(2012
).2.
J. P.
Aubin
, “Un théorème de compacité
,” C. R. Acad. Sci. Paris
256
, 5012
–5014
(1963
).3.
L.
Arnold
, Random Dynamical Systems
(Springer-Verlag
, Berlin
, 1998
).4.
J. M.
Arrieta
and A. N.
Carvalho
, “Spectral convergence and nonlinear dynamics of reaction-diffusion equations under perturbations of the domain
,” J. Differ. Equations
199
, 143
–178
(2004
).5.
H. O.
Bae
and J.
Roh
, “Existence of solutions of the g-Navier-Stokes equations
,” Taiwan. J. Math.
8
, 85
–102
(2004
).6.
J. M.
Ball
, “Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations
,” J. Nonlinear Sci.
7
, 475
–502
(1997
).7.
Z.
Brzeźniak
, T.
Caraballo
, J. A.
Langa
, Y.
Li
, G.
Łukaszewiczd
, and J.
Real
, “Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains
,” J. Differ. Equations
255
, 3897
–3919
(2013
).8.
Z.
Brzeźniak
and Y.
Li
, “Asymptotic compactness and absorbing sets for 2D stochastic Navier-Stokes equations on some unbounded domains
,” Trans. Am. Math. Soc.
358
, 5587
–5629
(2006
).9.
T.
Caraballo
, G.
Łukaszewiczd
, and J.
Real
, “Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains
,” C. R. Math. Acad. Sci. Paris
342
, 263
–268
(2006
).10.
I.
Chueshov
, Monotone Random Systems Theory and Applications
(Springer Science & Business Media
, 2002
), Vol. 1779.11.
H. Y.
Cui
, J. A.
Langa
, and Y. R.
Li
, “Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems
,” J. Dyn. Differ. Equations
30
, 1873
–1898
(2018
).12.
D. S.
Gong
, H. T.
Song
, and C. K.
Zhong
, “Attractors for nonautonomous two-dimensional space periodic Navier-Stokes equations
,” J. Math. Phys.
50
, 102706
(2009
).13.
B. L.
Guo
and C. X.
Guo
, “The convergence for non-Newtonian fluids to Navier-Stokes equation in 3D domain
,” Int. J. Dyn. Syst. Differ. Equations
2
, 129
–138
(2009
).14.
C. X.
Guo
, B. L.
Guo
, and Y. F.
Guo
, “Random attractors of stochastic non-Newtonian fluids on unbounded domain
,” Stoch. Dyn.
14
, 1350008
(2014
).15.
C. X.
Guo
and B. L.
Guo
, “H1-random attractors of stochastic monopolar non-Newtonian fluids with multiplicative noise
,” Commun. Math. Sci.
12
, 1565
–1578
(2014
).16.
C. X.
Guo
, C. Y.
Li
, and Y. Q.
Han
, “Dynamical behaviors of stochastic Hasegawa-Mima equation in torus
,” J. Math. Phys.
59
, 021508
(2018
).17.
D.
Iftimie
and G.
Raugel
, “Some results on the Navier-Stokes equations in thin 3D domains
,” J. Differ. Equations
169
, 281
–331
(2001
).18.
J. P.
Jiang
and Y. R.
Hou
, “The global attractor of g-Navier-Stokes equations with linear dampness on .
,” Appl. Math. Comput.
215
, 1068
–1076
(2009
).19.
J. P.
Jiang
and Y. R.
Hou
, “Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains
,” Appl. Math. Mech.
31
, 697
–708
(2010
).20.
J. P.
Jiang
, Y. R.
Hou
, and X. X.
Wang
, “Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with linear dampness
,” Appl. Math. Mech.
32
, 151
–166
(2011
).21.
J. P.
Jiang
and X. X.
Wang
, “Global attractor of 2D autonomous g-Navier-Stokes equations
,” Appl. Math. Mech.
34
, 385
–394
(2013
).22.
P. E.
Kloeden
and J.
Simsen
, “Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents
,” J. Math. Anal. Appl.
425
, 911
–918
(2015
).23.
M.
Kwak
, H.
Kwean
, and J.
Roh
, “The dimension of attractor of the 2D g-Navier-Stokes equations
,” J. Math. Anal. Appl.
315
, 436
–461
(2006
).24.
J. A.
Langa
, G.
Łukaszewicz
, and J.
Real
, “Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains
,” Nonlinear Anal.
66
, 735
–749
(2007
).25.
D. S.
Li
and L.
Shi
, “Upper semicontinuity of attractors of stochastic delay reaction-diffusion equations in the delay
,” J. Math. Phys.
59
, 032703
(2018
).26.
D. S.
Li
, B. X.
Wang
, and X. H.
Wang
, “Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains
,” J. Differ. Equations
262
, 1575
–1602
(2017
).27.
F. Z.
Li
, Y. R.
Li
, and R. H.
Wang
, “Regular measurable dynamics for reaction-diffusion equations on narrow domains with rough noise
,” Discrete Contin. Dyn. Syst.
38
, 3663
–3685
(2018
).28.
Y. R.
Li
, A. H.
Gu
, and J.
Li
, “Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations
,” J. Differ. Equations
258
, 504
–534
(2015
).29.
Y. R.
Li
and B. L.
Guo
, “Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations
,” J. Differ. Equations
245
, 1775
–1800
(2008
).30.
Y. R.
Li
, L. B.
She
, and R. H.
Wang
, “Asymptotically autonomous dynamics for parabolic equation
,” J. Math. Anal. Appl.
459
, 1106
–1123
(2018
).31.
Y. R.
Li
, L. B.
She
, and J. Y.
Yin
, “Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE
,” Discrete Contin. Dyn. Syst. Ser. B
23
, 1535
–1557
(2018
).32.
Y. R.
Li
and J. Y.
Yin
, “A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations
,” Discrete Contin. Dyn. Syst., Ser. B
21
, 1203
–1223
(2016
).33.
D. T.
Quyet
, “Pullback attractors for strong solutions of 2D non-autonomous g-Navier-Stokes equations
,” Acta Math. Vietnam.
40
, 637
–651
(2015
).34.
G.
Raugel
and G. R.
Sell
, “Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions
,” J. Am. Math. Soc.
6
, 503
–568
(1993
).35.
G.
Raugel
and G. R.
Sell
, “Navier-Stokes equations in thin 3D domains III: Existence of a global attractor
,” Turbul. Fluid Flows
55
, 137
–163
(1993
).36.
R.
Rosa
, “The global attractor for the 2D Navier-Stokes flow on some unbounded domains
,” Nonlinear Anal.
32
, 71
–85
(1998
).37.
38.
J.
Roh
, “Dynamics of the g-Navier-Stokes equations
,” J. Differ. Equations
211
, 452
–484
(2005
).39.
B. X.
Wang
, “Asymptotic behavior of stochastic wave equations with critical exponents on .
,” Trans. Am. Math. Soc.
363
, 3639
–3663
(2011
).40.
B. X.
Wang
, “Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems
,” J. Differ. Equations
253
, 1544
–1583
(2012
).41.
B. X.
Wang
, “Periodic random attractors for stochastic Navier-Stokes equations on unbounded domains
,” Electron J. Differential Equations
59
, 1
–18
(2012
).42.
S. L.
Wang
and Y. R.
Li
, “Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations
,” Physica D
382-383
, 46
–57
(2018
).43.
X.
Wang
and S.
Li
, “Pullback attractors for non-autonomous 2D Navier-Stokes equations with linear damping in some unbounded domains
,” Acta Math. Sci. Ser. A Chin. Ed.
29
, 873
–881
(2009
).44.
C. D.
Zhao
, “Pullback asymptotic behavior of solutions for a non-autonomous non-Newtonian fluid on two-dimensional unbounded domains
,” J. Math. Phys.
53
, 122702
(2012
).45.
W. Q.
Zhao
and Y. R.
Li
, “Asymptotic behavior of two-dimensional stochastic magneto-hydrodynamics equations with additive noises
,” J. Math. Phys.
52
, 072701
(2011
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.