We derive a general formula for the Euler characteristic of a fibration of projective hypersurfaces in terms of invariants of an arbitrary base variety. When the general fiber is an elliptic curve, such formulas have appeared in the physics literature in the context of calculating D-brane charge for M-/F-theory and type-IIB compactifications of string vacua. While there are various methods for computing Euler characteristics of algebraic varieties, we prove a base-independent pushforward formula which reduces the computation of the Euler characteristic of relative hypersurfaces to simple algebraic manipulations of rational expressions determined by its divisor class in a projective bundle. We illustrate our methods by applying them to an explicit family of relative hypersurfaces whose fibers are of arbitrary dimension and degree.

1.
P.
Aluffi
and
M.
Esole
, “
Chern class identities from tadpole matching in type IIB and F-theory
,”
J. High Energy Phys.
2009
(
3
),
032
.
2.
P.
Aluffi
and
M.
Esole
, “
New orientifold weak coupling limits in F-theory
,”
J. High Energy Phys.
2010
,
020
.
3.
J.-P.
Brasselet
,
J.
Schürmann
, and
S.
Yokura
, “
Hirzebruch classes and motivic Chern classes for singular spaces
,”
J. Topol. Anal.
2
(
01
),
1
55
(
2010
).
4.
V.
Bussi
and
S.
Yokura
, “
Naive motivic Donaldson-Thomas type Hirzebruch classes and some problems
,”
J. Singularities
10
,
26
53
(
2014
).
5.
E. F.
Cornelius
, Jr.
, “
Identities for complete homogeneous symmetric polynomials
,”
JP J. Algebra Number Theory Appl.
21
,
109
116
(
2011
), available at http://www.pphmj.com/abstract/5817.htm.
6.
M.
Esole
,
J.
Fullwood
, and
S.-T.
Yau
, “
D5 elliptic fibrations: Non-Kodaira fibers and new orientifold limits of F-theory
,”
Commun. Number Theory Phys.
9
(
3
),
583
642
(
2015
).
7.
M.
Esole
,
M. J.
Kang
, and
S.-T.
Yau
, “
A new model for elliptic fibrations with a rank one Mordell-Weil group: I. Singular fibers and semi-stable degenerations
,” e-print arXiv:1410.0003 (
2011
).
8.
J.
Fullwood
, “
On generalized Sethi-Vafa-Witten formulas
,”
J. Math. Phys.
52
(
8
),
082304
(
2011
).
9.
W.
Fulton
,
Intersection Theory, Volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1998
).
10.
D. R.
Grayson
and
M. E.
Stillman
, Macaulay2, a software system for research in algebraic geometry,
2016
.
11.
M.
Helmer
, “
Algorithms to compute the topological Euler characteristic, Chern-Schwartz-Macpherson class and Segre class of projective varieties
,”
J. Symbolic Comput.
73
,
120
(
2015
).
12.
C.
Jost
, “
Computing characteristic classes and the topological Euler characteristic of complex projective schemes
,”
JSAG
7
(
1
),
31
39
(
2015
).
13.
R. D.
MacPherson
, “
Chern classes for singular algebraic varieties
,”
Ann. of Math.
100
(
2
),
423
432
(
1974
).
14.
S.
Sethi
,
C.
Vafa
, and
E.
Witten
, “
Constraints on low-dimensional string compactifications
,”
Nucl. Phys. B
480
(
1-2
),
213
224
(
1996
).
You do not currently have access to this content.