The quantum Zeno effect, in its original form, uses frequent projective measurements to freeze the evolution of a quantum system that is initially governed by a fixed Hamiltonian. We generalize this effect simultaneously in three directions by allowing open system dynamics, time-dependent evolution equations, and general quantum operations in place of projective measurements. More precisely, we study Markovian master equations with bounded generators whose time dependence is Lipschitz continuous. Under a spectral gap condition on the quantum operation, we show how frequent measurements again freeze the evolution outside an invariant subspace. Inside this space, the evolution is described by a modified master equation.

1.
B.
Misra
and
E. C. G.
Sudarshan
, “
The Zenos paradox in quantum theory
,”
J. Math. Phys.
18
(
4
),
756
763
(
1977
).
2.
W. M.
Itano
,
D. J.
Heinzen
,
J. J.
Bollinger
, and
D. J.
Wineland
, “
Quantum Zeno effect
,”
Phys. Rev. A
41
,
2295
2300
(
1990
).
3.
M. C.
Fischer
,
B.
Gutiérrez-Medina
, and
M. G.
Raizen
, “
Observation of the quantum Zeno and anti-Zeno effects in an unstable system
,”
Phys. Rev. Lett.
87
,
040402
(
2001
).
4.
T.
Kato
and
K.
Masuda
, “
Trotter’s product formula for nonlinear semigroups generated by the subdifferentials of convex functionals
,”
J. Math. Soc. Jpn.
30
(
1
),
169
178
(
1978
).
5.
P. R.
Chernoff
, “
Note on product formulas for operator semigroups
,”
J. Funct. Anal.
2
(
2
),
238
242
(
1968
).
6.
A. U.
Schmidt
, “
Mathematics of the quantum Zeno effect
,” in
Mathematical Physics Research at the Leading Edge
(
Nova Science Publishers
,
2003
), pp.
111
141
.
7.
P.
Facchi
and
S.
Pascazio
, “
Quantum Zeno dynamics: Mathematical and physical aspects
,”
J. Phys. A: Math. Theor.
41
(
49
),
493001
(
2008
).
8.
Y.
Li
,
D. A.
Herrera-Martí
, and
L. C.
Kwek
, “
Quantum Zeno effect of general quantum operations
,”
Phys. Rev. A
88
,
042321
(
2013
).
9.
J. M.
Dominy
,
G. A.
Paz-Silva
,
A. T.
Rezakhani
, and
D. A.
Lidar
, “
Analysis of the quantum Zeno effect for quantum control and computation
,”
J. Phys. A: Math. Theor.
46
(
7
),
075306
(
2013
).
10.
I. A.
Luchnikov
and
S. N.
Filippov
, “
Quantum evolution in the stroboscopic limit of repeated measurements
,”
Phys. Rev. A
95
,
022113
(
2017
).
11.
D.
Burgarth
,
P.
Facchi
,
H.
Nakazato
,
S.
Pascazio
, and
K.
Yuasa
, “
Generalized adiabatic theorem and strong coupling limits
,” e-print arXiv:1807.02036 (
2018
).
12.
D.
Burgarth
,
P.
Facchi
,
H.
Nakazato
,
S.
Pascazio
, and
K.
Yuasa
, “
Quantum Zeno dynamics from general quantum operations
,” e-print arXiv:1809.09570 (
2018
).
13.
T.
Möbus
, “
Generalized quantum Zeno effects
,” B.S. thesis,
Department of Mathematics, Technical University of Munich
,
2018
.
14.
N.
Barankai
and
Z.
Zimborás
, “
Generalized quantum Zeno dynamics and ergodic means
,” e-print arXiv:1811.02509 (
2018
).
15.
B.
Russo
and
H. A.
Dye
, “
A note on unitary operators in C*-algebras
,”
Duke Math. J.
33
(
2
),
413
416
(
1966
).
16.
D. E.
Evans
and
R.
Hoegh-Krohn
, “
Spectral properties of positive maps on C*-Algebras
,”
J. London Math. Soc.
s2-17
(
2
),
345
355
(
1978
).
17.
K.-J.
Engel
and
R.
Nagel
,
One-Parameter Semigroups for Linear Evolution Equations
, Graduate Texts in Mathematics (
Springer-Verlag New York, Inc.
,
New York, NY
,
2000
), Vol. 194.
18.
T.
Kato
,
Perturbation Theory for Linear Operators
, 2nd ed. (
Springer
,
Berlin, Heidelberg
,
1995
), Vol. 132.
19.
B.
Simon
,
Operator Theory: A Comprehensive Course in Analysis, Part 4
(
American Mathematical Society
,
Providence, Rhode Island
,
2015
).
20.
H.
Fattorini
and
A.
Kerber
,
The Cauchy Problem
(
Cambridge University Press
,
1984
).
21.
H.
Tanabe
,
Functional Analytic Methods for Partial Differential Equations
, Monographs and Textbooks in Pure and Applied Mathematics (
Dekker
,
New York, NY
,
1997
), Vol. 204.
22.

In fact, this limit is the way in which the propagators are constructed in the first place (cf. Ref. 21, Sec. 7.3).

You do not currently have access to this content.