We consider a long-range scattering theory for discrete Schrödinger operators on the hexagonal lattice, which describe tight-binding Hamiltonians on the graphene sheet. We construct Isozaki-Kitada modifiers for a pair of the difference Laplacian on the hexagonal lattice and perturbed operators with long-range potentials. We prove that these modified wave operators exist and that they are complete.

1.
Amrein
,
W.
,
Boutet de Monvel
,
A.
, and
Georgescu
,
V.
, “
C0-groups, commutator methods and spectral theory of N-body Hamiltonians
,” in
Progress in Mathematics
(
Birkhäuser Verlag
,
Basel
,
1996
), Vol. 135.
2.
Ando
,
K.
, “
Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice
,”
Ann. Henri Poincaré
14
(
2
),
347
383
(
2013
).
3.
Ando
,
K.
,
Isozaki
,
H.
, and
Morioka
,
H.
, “
Spectral properties of Schrödinger operators on perturbed lattices
,”
Ann. Henri Poincaré
17
(
8
),
2103
2171
(
2016
).
4.
Ando
,
K.
,
Isozaki
,
H.
, and
Morioka
,
H.
, “
Inverse scattering for Schrödinger operators on perturbed lattices
,”
Ann. Henri Poincaré
19
,
3397
3455
(
2018
).
5.
Boutet de Monvel
,
A.
and
Sahbani
,
J.
, “
On the spectral properties of discrete Schrödinger operators: (The multi-dimensional case)
,”
Rev. Math. Phys.
11
,
1061
1078
(
1999
).
6.
Dereziński
,
J.
and
Gérard
,
C.
,
Scattering Theory of Classical and Quantum N-Particle Systems
(
Springer Verlag
,
1997
).
7.
Isozaki
,
H.
and
Kitada
,
H.
, “
Modified wave operators with time-independent modifiers
,”
J. Fac. Sci. Univ. Tokyo, Sect. IA: Math.
32
(
1
),
77
104
(
1985
).
8.
Isozaki
,
H.
and
Korotyaev
,
I.
, “
Inverse problems, trace formulae for discrete Schrödinger operators
,”
Ann. Henri Poincaré
13
,
751
788
(
2012
).
9.
Kato
,
T.
, “
Wave operators and similarity for some non-selfadjoint operators
,”
Math. Ann.
162
,
258
279
(
1965/1966
).
10.
Liu
,
W.
, “
Criteria for embedded eigenvalues for discrete Schrödinger operators
,” preprint arXiv:1805.02817 (
2018
).
11.
Nakamura
,
S.
, “
Modified wave operators for discrete Schrödinger operators with long-range perturbations
,”
J. Math. Phys.
55
,
112101
(
2014
).
12.
Nakamura
,
S.
, “
Microlocal properties of scattering matrices
,”
Commun. Partial Differ. Equations
41
(
6
),
894
912
(
2016
).
13.
Parra
,
D.
and
Richard
,
S.
, “
Spectral and scattering theory for Schrödinger operators on perturbed topological crystals
,”
Rev. Math. Phys.
30
,
1850009-1
1850009-39
(
2018
).
14.
Reed
,
M.
and
Simon
,
B.
,
The Methods of Modern Mathematical Physics, Volume III, Scattering Theory
(
Academic Press
,
1979
).
15.
Ruzhansky
,
M.
and
Turunen
,
V.
,
Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Pseudo-Differential Operators, Theory and Applications
(
Springer Basel AG
,
2009
), Vol. 2.
16.
Tadano
,
Y.
, “
Long-range scattering for discrete Schrödinger operators
,”
Ann. Henri Poincaré
20
,
1439
1469
(
2019
); preprint arXiv:1605.02466.
17.
Yafaev
,
D. R.
,
Mathematical Scattering Theory: General Theory
, Mathematical Surveys and Monographs Vol. 105 (
American Mathematical Society
,
Providence, RI
,
1992
).
18.
Yafaev
,
D. R.
,
Mathematical Scattering Theory: Analytic Theory
, Mathematical Surveys and Monographs Vol. 158 (
American Mathematical Society
,
Providence, RI
,
2010
).
You do not currently have access to this content.