We consider a long-range scattering theory for discrete Schrödinger operators on the hexagonal lattice, which describe tight-binding Hamiltonians on the graphene sheet. We construct Isozaki-Kitada modifiers for a pair of the difference Laplacian on the hexagonal lattice and perturbed operators with long-range potentials. We prove that these modified wave operators exist and that they are complete.
REFERENCES
1.
Amrein
, W.
, Boutet de Monvel
, A.
, and Georgescu
, V.
, “C0-groups, commutator methods and spectral theory of N-body Hamiltonians
,” in Progress in Mathematics
(Birkhäuser Verlag
, Basel
, 1996
), Vol. 135.2.
Ando
, K.
, “Inverse scattering theory for discrete Schrödinger operators on the hexagonal lattice
,” Ann. Henri Poincaré
14
(2
), 347
–383
(2013
).3.
Ando
, K.
, Isozaki
, H.
, and Morioka
, H.
, “Spectral properties of Schrödinger operators on perturbed lattices
,” Ann. Henri Poincaré
17
(8
), 2103
–2171
(2016
).4.
Ando
, K.
, Isozaki
, H.
, and Morioka
, H.
, “Inverse scattering for Schrödinger operators on perturbed lattices
,” Ann. Henri Poincaré
19
, 3397
–3455
(2018
).5.
Boutet de Monvel
, A.
and Sahbani
, J.
, “On the spectral properties of discrete Schrödinger operators: (The multi-dimensional case)
,” Rev. Math. Phys.
11
, 1061
–1078
(1999
).6.
Dereziński
, J.
and Gérard
, C.
, Scattering Theory of Classical and Quantum N-Particle Systems
(Springer Verlag
, 1997
).7.
Isozaki
, H.
and Kitada
, H.
, “Modified wave operators with time-independent modifiers
,” J. Fac. Sci. Univ. Tokyo, Sect. IA: Math.
32
(1
), 77
–104
(1985
).8.
Isozaki
, H.
and Korotyaev
, I.
, “Inverse problems, trace formulae for discrete Schrödinger operators
,” Ann. Henri Poincaré
13
, 751
–788
(2012
).9.
Kato
, T.
, “Wave operators and similarity for some non-selfadjoint operators
,” Math. Ann.
162
, 258
–279
(1965/1966
).10.
Liu
, W.
, “Criteria for embedded eigenvalues for discrete Schrödinger operators
,” preprint arXiv:1805.02817 (2018
).11.
Nakamura
, S.
, “Modified wave operators for discrete Schrödinger operators with long-range perturbations
,” J. Math. Phys.
55
, 112101
(2014
).12.
Nakamura
, S.
, “Microlocal properties of scattering matrices
,” Commun. Partial Differ. Equations
41
(6
), 894
–912
(2016
).13.
Parra
, D.
and Richard
, S.
, “Spectral and scattering theory for Schrödinger operators on perturbed topological crystals
,” Rev. Math. Phys.
30
, 1850009-1
–1850009-39
(2018
).14.
Reed
, M.
and Simon
, B.
, The Methods of Modern Mathematical Physics, Volume III, Scattering Theory
(Academic Press
, 1979
).15.
Ruzhansky
, M.
and Turunen
, V.
, Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Pseudo-Differential Operators, Theory and Applications
(Springer Basel AG
, 2009
), Vol. 2.16.
Tadano
, Y.
, “Long-range scattering for discrete Schrödinger operators
,” Ann. Henri Poincaré
20
, 1439
–1469
(2019
); preprint arXiv:1605.02466.17.
Yafaev
, D. R.
, Mathematical Scattering Theory: General Theory
, Mathematical Surveys and Monographs Vol. 105 (American Mathematical Society
, Providence, RI
, 1992
).18.
Yafaev
, D. R.
, Mathematical Scattering Theory: Analytic Theory
, Mathematical Surveys and Monographs Vol. 158 (American Mathematical Society
, Providence, RI
, 2010
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.