Using an expanded algebraic formalism with the inclusion of inverse operators, we construct raised and decreased coherent states for a set of exactly solvable quantum confined systems. We assume in this procedure both the ladder-operator and the displacement-operator methods, showing the equivalence between the two approaches. For each coherent state defined, we present its expansion in the Hilbert eigenstate space Hes, eigenvalue equation, overcompleteness relation, as well as other intrinsic properties. Whenever possible, we present an interpretation based on nonlinear deformation models for these new forms of coherent states. We evaluate the relevance of the new coherent states in quantum entanglement and squeezing by taking, as an example, the case of a coupled system.

1.
E.
Schrödinger
,
Naturwissenschaften
14
,
664
(
1926
).
2.
J. R.
Klauder
and
B. S.
Skagerstam
,
Coherent States—Applications in Physics and Mathematical Physics
(
World Scientific
,
Singapore
,
1985
).
3.
A. M.
Perelomov
,
Generalised Coherent States and Their Applications
(
Springer
,
Berlin
,
1986
).
4.
A. B.
Balantekin
, “
Algebraic approach to shape invariance
,”
Phys. Rev. A
57
,
4188
4191
(
1998
).
5.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
Generalized coherent, squeezed and intelligent states for exactly solvable quantum systems and the analogue of the displacement and squeezing operators
,”
J. Phys. A: Math. Theor.
46
,
315303
(
2013
).
6.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
Algebraic construction of coherent states for nonlinear quantum deformed systems
,”
J. Phys. A: Math. Theor.
45
,
165302
(
2012
).
7.
L.
Infeld
and
T. E.
Hull
, “
The factorization method
,”
Rev. Mod. Phys.
23
,
21
68
(
1951
).
8.
L.
Gendenshtein
, “
Derivation of exact spectra of the Schrödinger equation by means of supersymmetry
,”
Pis’ma Zh. Eksp. Teor. Fiz.
38
,
299
302
(
1983
).
9.
V. A.
Kostelecky
and
D. K.
Campbell
,
Supersymmetry in Physics
(
North-Holland, Amsterdam
,
1985
).
F.
Cooper
,
A.
Khare
, and
U.
Sukhatme
, “
Supersymmetry and quantum mechanics
,”
Phys. Rep.
251
,
267
385
(
1985
).
10.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
Inverse generators in the algebraic description of quantum confined systems: Properties and connections with nonlinear quantum deformation process and phase operators
,”
J. Math. Phys.
58
,
122102
(
2017
).
11.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
A consistent bridge for the construction of generalized nonclassical states for confined systems through the inclusion of inverse generators in the algebraic formalism
,”
J. Math. Phys.
60
,
012105
(
2019
).
12.
N. I.
Akhiezer
,
The Classical Moment Problem and Some Related Questions in Analysis
(
Oliver and Boyd
,
London
,
1965
).
13.
J. D.
Tamarkin
and
J. A.
Shohat
,
The Problem of Moments
(
APS
,
New York
,
1943
).
14.
V. A.
Ditkin
and
A. O.
Prudnikov
,
Integral Transforms and Operational Calculus
(
Pergamon
,
Oxford
,
1965
).
15.
I. N.
Sneddon
,
The Use of Integral Transforms
(
McGraw-Hill
,
New York
,
1974
).
16.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
A two-level atom coupled to a two-dimensional supersymmetric and shape-invariant system: Dynamics and entanglement
,”
J. Phys. A: Math. Theor.
40
,
3933
3957
(
2007
).
17.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
Quantum dynamics of parasupersymmetric and shape-invariant coupled systems
,”
J. Phys. A: Math. Theor.
40
,
8417
8439
(
2007
).
18.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
Entropy and entanglement dynamics in a quantum deformed coupled system
,”
J. Phys. A: Math. Theor.
41
,
315302
(
2008
).
19.
H.
Araki
and
E. H.
Lieb
, “
Entropy inequalities
,”
Commun. Math. Phys.
18
,
160
170
(
1970
).
20.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
An algebraic q-deformed form for shape-invariant systems
,”
J. Phys. A: Math. Gen.
36
,
11631
11641
(
2003
).
21.
A. N. F.
Aleixo
and
A. B.
Balantekin
, “
Multiparameter deformation theory for quantum confined systems
,”
J. Math. Phys.
50
,
112103
(
2009
).
You do not currently have access to this content.