The matrix elements of unitary SUq(3) corepresentations, which are analogs of the symmetric powers of the natural representation, are shown to be the bivariate q-Krawtchouk orthogonal polynomials, thus, providing an algebraic interpretation of these polynomials in terms of quantum groups.

1.
T. H.
Koornwinder
, “
Orthogonal polynomials in connection with quantum groups
,”
Orthogonal Polynomials
294
,
257
292
(
1990
).
2.
M. V.
Tratnik
, “
Some multivariable orthogonal polynomials of the Askey tableau-discrete families
,”
J. Math. Phys.
32
,
2337
2342
(
1991
).
3.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
The multivariate Krawtchouk polynomials as matrix elements of the rotation group representations on oscillator states
,”
J. Phys. A: Math. Theor.
46
,
505203
(
2013
).
4.
P.
Iliev
, “
A Lie-theoretic interpretation of multivariate hypergeometric polynomials
,”
Compositio Math.
148
,
991
1002
(
2012
); e-print arXiv:1101.1683.
5.
P.
Iliev
and
P.
Terwilliger
, “
The Rahman polynomials and the Lie algebra sl3(C).
,”
Trans. Am. Math. Soc.
364
,
4225
4238
(
2012
).
6.
T.
Koornwinder
, “
Representations of the twisted SU(2) quantum group and some q-hypergeometric orthogonal polynomials
,”
Indagationes Math.
92
,
97
117
(
1989
).
7.
A. S.
Zhedanov
, “
Q rotations and other Q transformations as unitary nonlinear automorphisms of quantum algebras
,”
J. Math. Phys.
34
,
2631
2647
(
1993
).
8.
V. X.
Genest
,
S.
Post
,
L.
Vinet
,
G.-F.
Yu
, and
A.
Zhedanov
, “
q-Rotations and Krawtchouk polynomials
,”
Ramanujan J.
40
,
335
357
(
2016
).
9.
R.
Floreanini
and
L.
Vinet
, “
On the quantum group and quantum algebra approach to q-special functions
,”
Lett. Math. Phys.
27
,
179
190
(
1993
).
10.
G.
Gasper
and
M.
Rahman
, “
Some systems of multivariable orthogonal q-Racah polynomials
,”
Ramanujan J.
13
,
389
405
(
2007
).
11.
V. X.
Genest
,
S.
Post
, and
L.
Vinet
, “
An algebraic interpretation of the multivariate q-Krawtchouk polynomials
,”
Ramanujan J.
43
,
415
445
(
2017
); e-print arXiv:1508.07770.
12.
K.
Bragiel
, “
The twisted SU(3) group. Irreducible *-representations of the C*-Algebra C(SμU(3))
,”
Lett. Math. Phys.
17
,
37
44
(
1989
).
13.
Y. S.
Soibelman
, “
Algebra of functions on a compact quantum group and its representations
,”
Algebra Analiz
2
(
1
),
190
212
(
1990
) [Leningrad. Math. J. 2(1), 161–178 (1991)].
14.
H. T.
Koelink
, “
On *-representations of the Hopf *-algebra associated with the quantum group Uq(n)
,”
Compositio Math.
77
(
2
),
199
231
(
1991
).
15.
L. I.
Korogodski
and
Y. S.
Soibelman
, “
Algebras of functions on quantum groups: Part I
,” in
Mathematical Surveys and Monographs
(
American Mathematical Society
,
1998
), Vol. 56, p.
150
.
16.
L. L.
Vaksman
and
Y. S.
Soibelman
, “
Algebra of functions on the quantum group SU(2)
,”
Funct. Anal. Appl.
22
,
170
181
(
1988
).
17.
S. L.
Woronowicz
, “
Compact matrix pseudogroups
,”
Commun. Math. Phys.
111
,
613
665
(
1987
).
18.
V.
Chari
and
A.
Pressley
,
A Guide to Quantum Groups
(
Cambridge University Press
,
1994
), p.
651
.
19.
M.
Noumi
,
H.
Yamada
, and
K.
Mimachi
, “
Finite dimensional representations of the quantum group GLq(n; C) and the zonal spherical functions on Uq(n − 1)\Uq(n)
,”
Jpn. J. Math.
19
,
31
80
(
1993
).
20.
R.
Koekoek
,
P. A.
Lesky
, and
R. F.
Swarttouw
, ,
Springer Monographs in Mathematics Series
(
Springer
,
2010
).
21.

Part of the normalization of Ref. 20 is here included in the polynomial kn(x; p, N, q) themselves.

22.
G.
Gasper
and
M.
Rahman
,
Encyclopedia of Mathematics and its Application
, 2nd ed. (
Cambridge University Press
,
2004
), Vol. 96, p.
428
.
23.
W.
Groenevelt
, “
A quantum algebra approach to multivariate Askey-Wilson polynomials
,” e-print arXiv:1809.04327 (
2018
).
24.
N.
Burroughs
, “
Relating the approaches to quantised algebras and quantum groups
,”
Commun. Math. Phys.
133
,
91
117
(
1990
).
25.
T. H.
Koornwinder
, “
The addition formula for little q-Legendre polynomials and the SU(2) quantum group
,”
SIAM J. Math. Anal.
22
,
295
301
(
1991
).
26.
W.
Groenevelt
, “
Coupling coefficients for tensor product representations of quantum SU(2)
,”
J. Math. Phys.
55
,
101702
(
2014
).
You do not currently have access to this content.