In this paper, we use the inverse mean curvature flow to establish an optimal Minkowski type inequality, a weighted Alexandrov-Fenchel inequality for the mean convex star-shaped hypersurfaces in the Reissner-Nordström-anti-deSitter manifold, and a Penrose type inequality for asymptotically locally hyperbolic manifolds which can be realized as graphs over the Reissner-Nordström-anti-deSitter manifold.

1.
L. J.
Alías
,
J. H. S.
de Lira
, and
J. M.
Malacarne
, “
Constant higher-order mean curvature hypersurfaces in Riemannian spaces
,”
J. Inst. Math. Jussieu
5
(
4
),
527
562
(
2006
).
2.
W.
Beckner
, “
Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality
,”
Ann. Math.
138
,
213
242
(
1993
).
3.
H. L.
Bray
, “
Proof of the Riemannian Penrose inequality using the positive mass theorem
,”
J. Differ. Geom.
59
(
2
),
177
267
(
2001
).
4.
S.
Brendle
, “
Constant mean curvature surfaces in warped product manifolds
,”
Publ. Math. IHÉS
117
,
247
269
(
2013
).
5.
S.
Brendle
,
P.-K.
Hung
, and
M.-T.
Wang
, “
A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold
,”
Commun. Pure Appl. Math.
69
(
1
),
124
144
(
2016
).
6.
P.
Chruściel
and
M.
Herzlich
, “
The mass of asymptotically hyperbolic Riemannian manifolds
,”
Pac. J. Math.
212
(
2
),
231
264
(
2003
).
7.
M.
Dahl
,
R.
Gicquaud
, and
A.
Sakovich
, “
Penrose type inequalities for asymptotically hyperbolic graphs
,”
Ann. Henri Poincare
14
,
1135
1168
(
2013
).
8.
L. L.
de Lima
and
F.
Girão
, “
Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces
,”
Gen. Relativ. Gravitation
47
(
3
),
23
(
2015
).
9.
L. L.
de Lima
and
F.
Girão
, “
An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality
,”
Ann. Henri Poincare
17
(
4
),
979
1002
(
2016
).
10.
Y.
Ge
,
G.
Wang
, and
J.
Wu
, “
A new mass for asymptotically flat manifolds
,”
Adv. Math.
266
,
84
119
(
2014
).
11.
Y.
Ge
,
G.
Wang
, and
J.
Wu
, “
Hyperbolic Alexandrov-Fenchel quermassintegral inequalities. II
,”
J. Differ. Geom.
98
(
2
),
237
260
(
2014
).
12.
Y.
Ge
,
G.
Wang
,
J.
Wu
, and
C.
Xia
, “
A Penrose inequality for graphs over Kottler space
,”
Calculus Var. Partial Differ. Equations
52
(
3-4
),
755
782
(
2015
).
13.
Y.
Ge
,
G.
Wang
, and
J.
Wu
, “
The GBC mass for asymptotically hyperbolic manifolds
,”
Math. Z.
281
(
1-2
),
257
297
(
2015
).
14.
C.
Gerhardt
, “
Inverse curvature flows in hyperbolic space
,”
J. Differ. Geom.
89
(
3
),
487
527
(
2011
).
15.
G.
Huisken
and
T.
Ilmanen
, “
The inverse mean curvature flow and the Riemannian Penrose inequality
,”
J. Differ. Geom.
59
,
353
437
(
2001
).
16.
L.-H.
Huang
and
D.
Wu
, “
The equality case of the Penrose inequality for asymptotically flat graphs
,”
Trans. Am. Math. Soc.
367
(
1
),
31
47
(
2015
).
17.
H.
Kodama
and
A.
Ishibashi
, “
Master equations for perturbations of generalised static black holes with charge in higher dimensions
,”
Prog. Theor. Phys.
111
(
1
),
29
73
(
2004
).
18.
M.-K. G.
Lam
, “
The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions
,” e-print arXiv:1010.4256.
19.
H.
Li
and
Y.
Wei
, “
On inverse mean curvature flow in Schwarzschild space and Kottler space
,”
Calculus Var. Partial Differ. Equations
56
(
3
),
62
(
2017
).
20.
H.
Li
,
Y.
Wei
, and
C.
Xiong
, “
A geometric inequality on hypersurface in hyperbolic space
,”
Adv. Math.
253
,
152
162
(
2014
).
21.
H.
Li
,
Y.
Wei
, and
C.
Xiong
, “
The Gauss-Bonnet-Chern mass for graphic manifolds
,”
Ann. Global Anal. Geom.
45
(
4
),
251
266
(
2014
).
22.
H.
Mirandola
and
F.
Vitório
, “
The positive mass theorem and Penrose inequality for graphical manifolds
,”
Commun. Anal. Geom.
23
(
2
),
273
292
(
2015
).
23.
A.
Neves
, “
Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds
,”
J. Differ. Geom.
84
(
1
),
191
229
(
2010
).
24.
J.
Scheuer
, “
The inverse mean curvature flow in warped cylinders of non-positive radial curvature
,”
Adv. Math.
306
,
1130
1163
(
2017
).
25.
R.
Schoen
and
S.-T.
Yau
, “
On the proof of the positive mass conjecture in general relativity
,”
Commun. Math. Phys.
65
,
45
76
(
1979
).
26.
Z. H.
Wang
, “
A Minkowski-type inequality for hypersurfaces in the Reissner-Nordström-anti-deSitter manifold
,” Ph.D. dissertation (
Columbia University
,
2015
).
27.
X.
Wang
, “
Mass for asymptotically hyperbolic manifolds
,”
J. Differ. Geom.
57
,
273
299
(
2001
).
28.
G.
Wang
and
C.
Xia
, “
Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space
,”
Adv. Math.
259
,
532
556
(
2014
).
29.
E.
Witten
, “
A new proof of the positive energy theorem
,”
Commun. Math. Phys.
80
,
381
402
(
1981
).
You do not currently have access to this content.