In this paper, we use the inverse mean curvature flow to establish an optimal Minkowski type inequality, a weighted Alexandrov-Fenchel inequality for the mean convex star-shaped hypersurfaces in the Reissner-Nordström-anti-deSitter manifold, and a Penrose type inequality for asymptotically locally hyperbolic manifolds which can be realized as graphs over the Reissner-Nordström-anti-deSitter manifold.
REFERENCES
1.
L. J.
Alías
, J. H. S.
de Lira
, and J. M.
Malacarne
, “Constant higher-order mean curvature hypersurfaces in Riemannian spaces
,” J. Inst. Math. Jussieu
5
(4
), 527
–562
(2006
).2.
W.
Beckner
, “Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality
,” Ann. Math.
138
, 213
–242
(1993
).3.
H. L.
Bray
, “Proof of the Riemannian Penrose inequality using the positive mass theorem
,” J. Differ. Geom.
59
(2
), 177
–267
(2001
).4.
S.
Brendle
, “Constant mean curvature surfaces in warped product manifolds
,” Publ. Math. IHÉS
117
, 247
–269
(2013
).5.
S.
Brendle
, P.-K.
Hung
, and M.-T.
Wang
, “A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold
,” Commun. Pure Appl. Math.
69
(1
), 124
–144
(2016
).6.
P.
Chruściel
and M.
Herzlich
, “The mass of asymptotically hyperbolic Riemannian manifolds
,” Pac. J. Math.
212
(2
), 231
–264
(2003
).7.
M.
Dahl
, R.
Gicquaud
, and A.
Sakovich
, “Penrose type inequalities for asymptotically hyperbolic graphs
,” Ann. Henri Poincare
14
, 1135
–1168
(2013
).8.
L. L.
de Lima
and F.
Girão
, “Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces
,” Gen. Relativ. Gravitation
47
(3
), 23
(2015
).9.
L. L.
de Lima
and F.
Girão
, “An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality
,” Ann. Henri Poincare
17
(4
), 979
–1002
(2016
).10.
Y.
Ge
, G.
Wang
, and J.
Wu
, “A new mass for asymptotically flat manifolds
,” Adv. Math.
266
, 84
–119
(2014
).11.
Y.
Ge
, G.
Wang
, and J.
Wu
, “Hyperbolic Alexandrov-Fenchel quermassintegral inequalities. II
,” J. Differ. Geom.
98
(2
), 237
–260
(2014
).12.
Y.
Ge
, G.
Wang
, J.
Wu
, and C.
Xia
, “A Penrose inequality for graphs over Kottler space
,” Calculus Var. Partial Differ. Equations
52
(3-4
), 755
–782
(2015
).13.
Y.
Ge
, G.
Wang
, and J.
Wu
, “The GBC mass for asymptotically hyperbolic manifolds
,” Math. Z.
281
(1-2
), 257
–297
(2015
).14.
C.
Gerhardt
, “Inverse curvature flows in hyperbolic space
,” J. Differ. Geom.
89
(3
), 487
–527
(2011
).15.
G.
Huisken
and T.
Ilmanen
, “The inverse mean curvature flow and the Riemannian Penrose inequality
,” J. Differ. Geom.
59
, 353
–437
(2001
).16.
L.-H.
Huang
and D.
Wu
, “The equality case of the Penrose inequality for asymptotically flat graphs
,” Trans. Am. Math. Soc.
367
(1
), 31
–47
(2015
).17.
H.
Kodama
and A.
Ishibashi
, “Master equations for perturbations of generalised static black holes with charge in higher dimensions
,” Prog. Theor. Phys.
111
(1
), 29
–73
(2004
).18.
M.-K. G.
Lam
, “The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions
,” e-print arXiv:1010.4256.19.
H.
Li
and Y.
Wei
, “On inverse mean curvature flow in Schwarzschild space and Kottler space
,” Calculus Var. Partial Differ. Equations
56
(3
), 62
(2017
).20.
H.
Li
, Y.
Wei
, and C.
Xiong
, “A geometric inequality on hypersurface in hyperbolic space
,” Adv. Math.
253
, 152
–162
(2014
).21.
H.
Li
, Y.
Wei
, and C.
Xiong
, “The Gauss-Bonnet-Chern mass for graphic manifolds
,” Ann. Global Anal. Geom.
45
(4
), 251
–266
(2014
).22.
H.
Mirandola
and F.
Vitório
, “The positive mass theorem and Penrose inequality for graphical manifolds
,” Commun. Anal. Geom.
23
(2
), 273
–292
(2015
).23.
A.
Neves
, “Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds
,” J. Differ. Geom.
84
(1
), 191
–229
(2010
).24.
J.
Scheuer
, “The inverse mean curvature flow in warped cylinders of non-positive radial curvature
,” Adv. Math.
306
, 1130
–1163
(2017
).25.
R.
Schoen
and S.-T.
Yau
, “On the proof of the positive mass conjecture in general relativity
,” Commun. Math. Phys.
65
, 45
–76
(1979
).26.
Z. H.
Wang
, “A Minkowski-type inequality for hypersurfaces in the Reissner-Nordström-anti-deSitter manifold
,” Ph.D. dissertation (Columbia University
, 2015
).27.
X.
Wang
, “Mass for asymptotically hyperbolic manifolds
,” J. Differ. Geom.
57
, 273
–299
(2001
).28.
G.
Wang
and C.
Xia
, “Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space
,” Adv. Math.
259
, 532
–556
(2014
).29.
E.
Witten
, “A new proof of the positive energy theorem
,” Commun. Math. Phys.
80
, 381
–402
(1981
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.