We introduce the notion of perturbations of quantum stochastic models using the series product and establish the asymptotic convergence of sequences of quantum stochastic models under the assumption that they are related via a right series product perturbation. While the perturbing models converge to the trivial model, we allow that the individual sequences may be divergent corresponding to large model parameter regimes that frequently occur in physical applications. This allows us to introduce the concept of asymptotically equivalent models, and we provide several examples where we replace one sequence of models with an equivalent one tailored to capture specific features. These examples include a series product formulation of the principle of virtual work; essential commutativity of the noise in strong squeezing models; the decoupling of polarization channels in scattering by Faraday rotation driven by a strong laser field; and an application to quantum local asymptotic normality.

1.
R. L.
Hudson
and
K. R.
Parthasarathy
, “
Quantum Ito’s formula and stochastic evolutions
,”
Commun. Math. Phys.
93
,
301
323
(
1984
).
2.
K. R.
Parthasarathy
,
An Introduction to Quantum Stochastic Calculus
(
Birkhauser
,
1992
).
3.
L.
Accardi
,
A.
Frigerio
, and
Y. G.
Lu
, “
The weak coupling limit as a quantum functional central limit
,”
Commun. Math. Phys.
131
,
537
570
(
1990
).
4.
J. E.
Gough
, “
Quantum flows as Markovian limit of emission, absorption and scattering interactions
,”
Commun. Math. Phys.
254
,
489
(
2005
).
5.
C. W.
Gardiner
and
M. J.
Collett
, “
Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation
,”
Phys. Rev. A
31
(
6
),
3761
3774
(
1985
).
6.
C. W.
Gardiner
and
P.
Zoller
,
Quantum Noise
(
Springer Berlin
,
2000
).
7.
V. P.
Belavkin
, “
Quantum stochastic calculus and quantum nonlinear filtering
,”
J. Multivar. Anal.
42
(
2
),
171
201
(
1992
).
8.
L.
Bouten
,
R.
Van Handel
, and
M. R.
James
, “
An introduction to quantum filtering
,”
SIAM J. Control Optim.
46
(
6
),
2199
2241
(
2007
).
9.
J. E.
Gough
and
R.
van Handel
, “
Singular perturbation of quantum stochastic differential equations with coupling through an oscillator mode
,”
J. Stat. Phys.
127
(
3
),
575
607
(
2007
).
10.
L.
Bouten
and
A.
Silberfarb
, “
Adiabatic elimination in quantum stochastic models
,”
Commun. Math. Phys.
283
,
491
(
2008
).
11.
J.
Gough
and
M. R.
James
, “
Quantum feedback networks: Hamiltonian formulation
,”
Commun. Math. Phys.
287
,
1109
(
2009
).
12.
J.
Gough
and
M. R.
James
, “
The series product and its application to feedforward and feedback networks
,”
IEEE Trans. Autom. Control
54
,
2530
(
2009
).
13.
J. M.
Lindsay
and
S. J.
Wills
, “
Quantum stochastic operator cocycles via associated semigroups
,”
Math. Proc. Cambridge Philos. Soc.
142
,
535
556
(
2007
).
14.
L.
Bouten
,
J. K.
Stockton
,
G.
Sarma
, and
H.
Mabuchi
, “
Scattering of polarized laser light by an atomic gas in free space: A QSDE approach
,”
Phys. Rev. A
75
,
052111
(
2007
).
15.
H.
Trotter
, “
Approximations of semigroups of operators
,”
Pac. J. Math.
8
,
887
919
(
1958
).
16.
T.
Kato
, “
Remarks on pseudo-resolvents and infinitesimal generators of semigroups
,”
Proc. Jpn. Acad.
35
,
467
468
(
1959
).
17.
B.
Kümmerer
and
H.
Maassen
, “
The essentially commutative dilations of dynamical semigroups on Mn
,”
Commun. Math. Phys.
109
(
1
),
1
22
(
1987
).
18.
L.
Bouten
, “
Filtering and control in quantum optics
,” Ph.D. thesis,
University of Nijmegen
,
2004
; e-print arXiv:quant-ph/0410080.
19.
E. B.
Davies
,
One-Parameter Semigroups
(
Academic Press
,
London
,
1980
).
20.
J. E.
Avron
,
M.
Fraas
, and
G. M.
Graf
, “
Adiabatic response for Lindblad dynamics
,”
J. Stat. Phys.
148
(
5
),
800
823
(
2012
).
21.
J.
Hellmich
,
R.
Honegger
,
C.
Köstler
,
B.
Kümmerer
, and
A.
Rieckers
, “
Couplings to classical and non-classical squeezed white noise as stationary Markov processes
,”
Publ. Res. Inst. Math. Sci.
38
(
1
),
1
31
(
2002
).
22.
C.
Catana
,
L.
Bouten
, and
M.
Guta
, “
Fisher informations and local asymptotic normality for continuous-time quantum Markov processes
,”
J. Phys. A: Math. Theor.
48
(
36
),
365301
(
2015
).
You do not currently have access to this content.