We define a two-dimensional space called the spinor-plane, where all spinors that can be decomposed in terms of Restricted Inomata-McKinley (RIM) spinors reside, and describe some of its properties. Some interesting results concerning the construction of RIM-decomposable spinors emerge when we look at them by means of their spinor-plane representations. We show that, in particular, this space accommodates a bijective linear map between mass-dimension-one and Dirac spinor fields. As a highlight result, the spinor-plane enables us to construct homotopic equivalence relations, revealing a new point of view that can help us to give one more step toward the understanding of the spinor theory. In the end, we develop a simple method that provides the categorization of RIM-decomposable spinors in the Lounesto classification, working by means of spinor-plane coordinates, which avoids the often hard work of analyzing the bilinear covariant structures one by one.

1.
A.
Inomata
and
W. A.
McKinley
, “
Geometric theory of neutrinos
,”
Phys. Rev. Lett.
140
(
5B
),
B1467
(
1965
).
2.
M.
Novello
, “
Constructing Dirac linear fermions in terms of non-linear Heisenberg spinors
,”
Europhys. Lett.
80
,
41001
(
2007
).
3.
D.
Beghetto
and
J. M.
Hoff da Silva
, “
The (restricted) Inomata-McKinley spinor representation and the underlying topology
,”
Europhys. Lett.
119
,
40006
(
2017
).
4.
D. V.
Ahluwalia-Khalilova
and
D.
Grumiller
,
J. Cosmol. Astropart. Phys.
2005
(
07
),
012
.
5.
D. V.
Ahluwalia
, “
The theory of local mass dimension one fermions of spin one half
,”
Adv. Appl. Clifford Algebras
27
,
2247
(
2017
).
6.
R.
da Rocha
and
J. M.
Hoff da Silva
, “
From Dirac spinor fields to eigenspinoren des ladungskonjugationsoperators
,”
J. Math. Phys.
48
,
123517
(
2007
).
7.
J. M.
Hoff da Silva
and
R.
da Rocha
, “
From Dirac action to ELKO action
,”
Int. J. Mod. Phys. A
24
,
3227
3242
(
2009
).
8.
R.
da Rocha
and
J. M.
Hoff da Silva
, “
ELKO, flagpole and flag-dipole spinor fields, and the instanton hopf fibration
,”
Adv. Appl. Clifford Algebras
20
,
847
(
2010
).
9.
J. M.
Hoff da Silva
,
C. H.
Coronado Villalobos
,
R. J.
Bueno Rogerio
, and
E.
Scatena
, “
On the bilinear covariants associated to mass dimension one spinors
,”
Eur. Phys. J. C
76
,
563
(
2016
).
10.
W. E.
Baylis
,
Clifford (Geometric) Algebras with Applications to Physics, Mathematics, and Engineering
(
Editorial Birkhäuser Boston
,
Cambridge
,
1996
).
11.
P.
Lounesto
,
Clifford Algebra and Spinors
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2001
).
12.
R.
da Rocha
,
L.
Fabbri
,
J. M.
Hoff da Silva
,
R. T.
Cavalcanti
and
J. A.
Silva-Neto
,
J. Math. Phys.
54
,
102505
(
2013
).
13.
I. M.
Benn
and
R. W.
Tucker
,
An Introduction to Spinors and Geometry with Applications in Physics
(
Adam Hilger
,
Bristol
,
1987
).
14.
E.
Majorana
, “
Atomi orientati in campo magnetico variabile
,”
Il Nuovo Cimento
9
,
43
(
1932
).
15.
C. H.
Coronado Villalobos
and
R. J.
Bueno Rogerio
, “
The connection between Dirac dynamic and parity symmetry
,”
Europhys. Lett.
116
,
60007
(
2016
).
16.
W.
Heisenberg
, “
Research on the non-linear spinor theory with indefinite metric in hilbert space
,” in
Scientific Review Papers, Talks, and Books Wissenschaftliche Übersichtsartikel, Vorträge und Bücher
, Gesammelte Werke/Collected Works, edited by
W.
Blum
,
H. P.
Dürr
, and
H.
Rechenberg
(
Springer
,
Berlin, Heidelberg
,
1984
), Vol. B.
17.
S.
Joffily
and
M.
Novello
,
Gen. Relativ. Gravitation
48
,
151
(
2016
).
18.
W.
Heisenberg
, “
Quantum theory of fields and elementary particles
,”
Rev. Mod. Phys.
29
(
3
),
269
(
1957
).
19.
M.
Novello
, “
A spinor theory of gravity and the cosmological framework
,”
J. Cosmol. Astropart. Phys.
2007
(
06
),
018
.
20.
D. V.
Ahluwalia-Khalilova
, “
Dark matter, and its darkness
,”
Int. J. Mod. Phys. D
15
(
12
),
2267
2278
(
2006
).
21.
D. V.
Ahluwalia
and
S. P.
Horvath
, “
Very special relativity as relativity of dark matter: The Elko connection
,”
J. High Energy Phys.
2010
(
11
),
078
.
22.
A. G.
Cohen
and
S. L.
Glashow
, “
Very special relativity
,”
Phys. Rev. Lett.
97
,
021601
(
2006
).
23.
D. V.
Ahluwalia
, “
Evading Weinberg’s no-go theorem to construct mass dimension one fermions: Constructing darkness
,”
Europhys. Lett.
118
,
60001
(
2017
).
24.
R. J.
Bueno Rogerio
and
J. M.
Hoff da Silva
, “
The local vicinity of spins sum for certain mass dimension one spinors
,”
Europhys. Lett.
118
,
10003
(
2017
).
25.
E. P.
Wigner
, “
On unitary representations of the inhomogeneous Lorentz group
,”
Ann. Math.
40
,
149
(
1939
).
26.
R. J.
Bueno Rogerio
,
J. M.
Hoff da Silva
,
M.
Dias
, and
S. H.
Pereira
, “
Effective Lagrangian for a mass dimension one fermionic field in curved spacetime
,”
J. High Energy Phys.
2018
(
2
),
145
.
27.
E. P.
Wigner
, “
Unitary representations of the inhomogeneous Lorentz group including reflections
,” in
Group Theoretical Concepts and Methods in Elementary Particle Physics
, Lectures of the Istanbul Summer School of Theoretical Physics, 1962, edited by
F.
Gürsey
(
Gordon & Breach
,
New York
,
1964
), pp.
37
80
.
28.

In this work, what we call by a manifold with underlying trivial topology is a manifold M that has a trivial fundamental group π1(M) = 0. Otherwise, the manifold M will be said to have a non-trivial topology.

29.

The fundamental field equations must be non-linear in order to represent interaction. The masses of the particles should be a consequence of this interaction.18 

30.

The authors choose to work in abstract only with the λhS spinors since the physical content holds the same for all the other MDO spinors, one differing from the other only by a constant phase.

You do not currently have access to this content.