For the Lie algebra of derivations over a rational quantum torus, we construct a class of irreducible weight modules with all finite dimensional weight spaces, which are called the modules of highest weight type, generating the notion for the case of commutative torus.
REFERENCES
1.
B. N.
Allison
, S.
Berman
, J.
Faulkner
, and A.
Pianzola
, “Realization of graded-simple algebras as loop algebras
,” Forum Math.
20
, 395
–432
(2008
).2.
S.
Berman
and Y.
Billig
, “Irreducible representations for toroidal Lie algebras
,” J. Algebra
221
, 188
–231
(1999
).3.
Y.
Billig
and V.
Futorny
, “Classification of irreducible representations of Lie algebra of vector fields on a torus
,” J. Reine Angew. Math.
720
, 199
–216
(2016
).4.
S.
Berman
, Y.
Gao
, and Y. S.
Krylyuk
, “Quantum tori and elliptic quasi-simple Lie algebras
,” J. Funct. Anal.
135
(2
), 339
–389
(1996
).5.
A.
Elduque
and M.
Kochetov
, “Graded modules over classical simple Lie algebras with a grading
,” Isr. J. Math.
207
(1
), 229C280
(2015
).6.
V.
Futorny
and A.
Tsylke
, “Classification of irreducible nonzero modules with finite-dimensional weight spaces for affine Lie algebras
,” J. Algebra
238
, 426
–441
(2001
).7.
X.
Guo
, G.
Liu
, and K.
Zhao
, “Irreducible Harish-Chandra modules over extended Witt algebras
,” Ark. Math.
52
, 99
–112
(2014
).8.
R.
Goodman
and N. R.
Wallach
, Symmetry, Representations and Invariants,
Graduate Texts in Mathematics 255 (Springer
, 2009
).9.
T. A.
Larsson
, “Conformal fields: A class of representations of vect(N)
,” Int. J. Mod. Phys. A
7
(26
), 6493
–6508
(1992
).10.
W.
Lin
and S.
Tan
, “Representations of the Lie algebra of derivations for quantum torus
,” J. Algebra
275
, 250
–274
(2004
).11.
G.
Liu
and K.
Zhao
, “Irreducible Harish Chandra modules over the derivation algebras of rational quantum tori
,” Glasgow Math. J.
55
, 677
–693
(2013
).12.
G.
Liu
and K.
Zhao
, “Irreducible modules over the derivation algebras of rational quantum tori
,” J. Algebra
340
, 28
–34
(2011
).13.
O.
Mathieu
, “Classification of irreducible weight modules
,” Ann. l’Inst. Fourier
50
(2
), 537
–592
(2000
).14.
O.
Mathieu
, “Classification of Harish-Chandra modules over the Virasoro Lie algebra
,” Invent. Math.
107
, 225
–234
(1992
).15.
K.
Need
, “On the classification of rational quantum tori and the structure of their automorphism groups
,” Can. Math. Bull.
51
(2
), 261
–282
(2008
).16.
S. E.
Rao
, “Irreducible representations of the Lie-algebra of the diffeomorphisms of a d-dimensional torus
,” J. Algebra
182
, 401
–421
(1996
).17.
S. E.
Rao
, “Partial classification of modules for Lie-algebra of diffeomorphisms of d-dimensional torus
,” J. Math. Phys.
45
, 3322
(2004
).18.
S. E.
Rao
, P.
Batra
, and S. S.
Sharma
, “The irreducible modules for the derivations of the rational quantum torus
,” J. Algebra
410
, 333
–342
(2014
).19.
G.
Shen
, “Graded modules of graded Lie algebras of Cartan type. I. Mixed products of modules
,” Sci. Sin., Ser. A
29
(6
), 570
–581
(1986
).20.
C. K.
Xu
and S. B.
Tan
, “A class of weight modules for the derivation Lie algebra of quantum tori
,” J. Xiamen Univ. (Nat. Sci. Ed.)
55
(1
), 78
–81
(2016
) (in Chinese).21.
K.
Zhao
, “The q-Virasoro-like algebra
,” J. Algebra
188
(2
), 506
–512
(1997
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.