In this paper, we establish local-in-time existence and uniqueness of strong solutions in Hs for s>n2 to the viscous, zero thermal-diffusive Boussinesq equations in Rn,n=2,3. Beale-Kato-Majda type blow-up criterion has been established in three dimensions with respect to the BMO-norm of the vorticity. We further prove the local-in-time existence for nonviscous and fully ideal Boussinesq systems in Rn,n=2,3. Moreover, we establish blow-up criterion for nonviscous Boussinesq system in three dimensions and for fully ideal Boussinesq system in both two and three dimensions. Commutator estimates from the work of Kato and Ponce [Comm. Pure Appl. Math. 41, 891 (1988)] and Fefferman et al. [J. Funct. Anal. 267, 1035 (2014)] play important roles in the calculations.

1.
Abidi
,
H.
and
Hmidi
,
T.
, “
On the global well-posedness for Boussinesq system
,”
J. Differ. Equations
233
(
1
),
199
220
(
2007
).
2.
Abidi
,
H.
,
Hmidi
,
T.
, and
Keraani
,
S.
, “
On the global regularity of axisymmetric Navier-Stokes-Boussinesq system
,”
Discrete Contin. Dyn. Syst.
29
(
3
),
737
756
(
2011
).
3.
Adams
,
R. A.
and
Fournier
,
J. J. F.
,
Sobolev Spaces
, Pure and Applied Mathematics (
Academic Press
,
Amsterdam
,
1975
), Vol. 140.
4.
Beale
,
J. T.
,
Kato
,
T.
, and
Majda
,
A.
, “
Remarks on the breakdown of smooth solutions for the 3-D Euler equations
,”
Commun. Math. Phys.
94
,
61
66
(
1984
).
5.
Bessaih
,
H.
and
Ferrario
,
B.
, “
The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion
,”
J. Differ. Equations
262
(
3
),
1822
1849
(
2017
).
6.
Brezis
,
H.
and
Gallouet
,
T.
, “
Nonlinear Schrödinger evolution equations
,”
Nonlinear Anal. TMA
4
,
677
681
(
1980
).
7.
Brezis
,
H.
and
Wainger
,
S.
, “
A note on limiting cases of Sobolev embeddings and convolution inequalities
,”
Commun. Partial Differ. Equations
5
,
773
789
(
1980
).
8.
Cannon
,
J. R.
and
DiBenedetto
,
E.
, “
The initial value problem for the Boussinesq equations with data in Lp
,” in
Approximation Methods for Navier-Stokes Problems
, Lecture Note in Mathematics, edited by
Rautmann
,
R.
(
Springer
,
Berlin
,
1980
), Vol. 771, pp.
129
144
.
9.
Chae
,
D.
, “
Global regularity for the 2D Boussinesq equations with partial viscosity terms
,”
Adv. Math.
203
,
497
513
(
2006
).
10.
Chae
,
D.
,
Kim
,
S.-K.
, and
Nam
,
H.-S.
, “
Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations
,”
Nagoya Math. J.
155
,
55
88
(
1999
).
11.
Chae
,
D.
and
Nam
,
H.-S.
, “
Local existence and blow-up criterion for the Boussinesq equations
,”
Proc. R. Soc. Edinburgh, Sect. A
127
(
5
),
935
946
(
1997
).
12.
Danchin
,
R.
and
Paicu
,
M.
, “
Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces
,”
Phys. D
237
(
10-12
),
1444
1460
(
2008
).
13.
Danchin
,
R.
and
Paicu
,
M.
, “
Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux
,”
Bull. Soc. Math. France
136
(
2
),
261
309
(
2008
).
14.
Danchin
,
R.
and
Paicu
,
M.
, “
Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data
,”
Commun. Math. Phys.
290
(
1
),
1
14
(
2009
).
15.
Dhongade
,
U. D.
and
Deo
,
S. G.
, “
A nonlinear generalization of Bihari’s inequality
,”
Proc. Am. Math. Soc.
54
(
1
),
211
216
(
1976
).
16.
Evans
,
L. C.
,
Partial Differential Equations
, Graduate Studies in Mathematics, 2nd ed. (
American Mathematical Society
,
Providence, RI
,
2010
), Vol. 19.
17.
Fefferman
,
C. L.
, “
Characterizations of bounded mean oscillation
,”
Bull. Am. Math. Soc.
77
(
4
),
587
588
(
1971
).
18.
Fefferman
,
C. L.
,
McCormick
,
D. S.
,
Robinson
,
J. C.
, and
Rodrigo
,
J. L.
, “
Higher order commutator estimates and local existence for the non-resistive MHD equations and related models
,”
J. Funct. Anal.
267
,
1035
1056
(
2014
).
19.
Geng
,
J.
and
Fan
,
J.
, “
A note on regularity criterion for the 3D Boussinesq system with zero thermal conductivity
,”
Appl. Math. Lett.
25
(
1
),
63
66
(
2012
).
20.
Hmidi
,
T.
and
Keraani
,
S.
, “
On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity
,”
Adv. Differ. Equations
12
(
4
),
461
480
(
2007
).
21.
Hou
,
T. Y.
and
Li
,
C.
, “
Global well-posedness of the viscous Boussinesq equations
,”
Discrete Cont. Dyn. Syst.
12
(
1
),
1
12
(
2005
).
22.
Ishimura
,
N.
and
Morimoto
,
H.
, “
Remarks on the blow-up criterion for the 3-D Boussinesq equations
,”
Math. Models Methods Appl. Sci.
9
(
9
),
1323
1332
(
1999
).
23.
Kato
,
T.
and
Ponce
,
G.
, “
Commutator estimates and the Euler and Navier-Stokes equations
,”
Commun. Pure Appl. Math.
41
,
891
907
(
1988
).
24.
Kesavan
,
S.
,
Topics in Functional Analysis and Applications
, 2nd ed. (
New Age International Publishers
,
2015
).
25.
Kozono
,
H.
and
Taniuchi
,
Y.
, “
Limiting case of the Sobolev inequality in BMO, with application to the Euler equations
,”
Commun. Math. Phys.
214
,
191
200
(
2000
).
26.
Lemarié-Rieusset
,
P. G.
,
Recent Developments in the Navier-Stokes Problem
, CRC Research in Mathematics Series (
Chapman & Hall
,
2002
), Vol. 431.
27.
Lions
,
J. L.
and
Magenes
,
E.
,
Non-Homogeneous Boundary Value Problems and Applications
(
Springer-Verlag
,
New York
,
1972
), Vol. 1.
28.
Robinson
,
J. C.
,
Infinite Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors
(
Cambridge University Press
,
UK
,
2001
).
29.
Temam
,
R.
, “
Navier-Stokes equations
.” in
Theory and Numerical Analysis
, Studies in Mathematics and its Applications, (
North-Holland Publishing
,
Amsterdam, New York
,
1979
), Vol. 2.
30.
Qiu
,
H.
,
Du
,
Y.
, and
Yao
,
Z.
, “
A blow-up criterion for 3D Boussinesq equations in Besov spaces
,”
Nonlinear Anal.
73
(
3
),
806
815
(
2010
).
31.
Ye
,
Z.
and
Xu
,
X.
, “
Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation
,”
J. Differ. Equations
260
(
8
),
6716
6744
(
2016
).
32.
Ye
,
Z.
, “
Regularity criteria for 3D Boussinesq equations with zero thermal diffusion
,”
Electron. J. Differ. Equations
2015
(
97
),
1
7
(
2015
).
33.
Yosida
,
K.
,
Functional Analysis
, 6th ed. (
Springer-Verlag
,
Berlin Heidelberg New York
,
1980
).
You do not currently have access to this content.