We review the theory of orthogonal separation of variables on pseudo-Riemannian manifolds of constant non-zero curvature via concircular tensors and warped products. We then apply this theory simultaneously to both the three-dimensional hyperbolic and de Sitter spaces, obtaining an invariant classification of the thirty-four orthogonal separable webs on each space, modulo action of the respective isometry groups. The inequivalent coordinate charts adapted to each web are also determined and listed. The results obtained for hyperbolic 3-space agree with those in the literature, while the results for de Sitter 3-space appear to be new.
REFERENCES
1.
S.
Benenti
, “Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,” J. Math. Phys.
38
(12
), 6578
–6602
(1997
).2.
S.
Benenti
, C.
Chanu
, and G.
Rastelli
, “Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger equation. I. The completeness and Robertson conditions
,” J. Math. Phys.
43
(11
), 5183
–5222
(2002
).3.
A. T.
Bruce
, R. G.
McLenaghan
, and R. G.
Smirnov
, “A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables
,” J. Geom. Phys.
39
(4
), 301
–322
(2001
).4.
C. M.
Cochran
, R. G.
McLenaghan
, and R. G.
Smirnov
, “Equivalence problem for the orthogonal webs on the 3-sphere
,” J. Math. Phys.
52
(5
), 053509
(2011
).5.
M.
Crampin
, “Conformal killing tensors with vanishing torsion and the separation of variables in the Hamilton-Jacobi equation
,” Differ. Geom. Appl.
18
(1
), 87
–102
(2003
).6.
L. P.
Eisenhart
, “Separable systems of stackel
,” Ann. Math.
35
(2
), 284
–305
(1934
).7.
E. G.
Kalnins
, Separation of Variables for Riemannian Spaces of Constant Curvature
, Volume 28 of Pitman Monographs and Surveys in Pure and Applied Mathematics (Longman Scientific &Technical
, 1986
).8.
E. G.
Kalnins
, W.
Miller
, Jr., and G. J.
Reid
, “Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for and .
,” Proc. R. Soc. A
394
, 183
–206
(1984
).9.
10.
M. N.
Olevsky
, “Triorthogonal systems in spaces of constant curvature in which the equation admits complete separation of variables
,” Math. USSR. Sb.
27
, 379
–427
(1950
).11.
K.
Rajaratnam
, R. G.
McLenaghan
, and C.
Valero
, “Orthogonal separation of the Hamilton-Jacobi equation on spaces of constant curvature
,” Symmetry, Integrability Geom.: Methods Appl.
12
, 117
(2016
).12.
K.
Rajaratnam
, “Orthogonal separation of the Hamilton-Jacobi equation on spaces of constant curvature
,” M.S. thesis, University of Waterloo
, 2014
.13.
K.
Rajaratnam
and R. G.
McLenaghan
,“Classification of Hamilton-Jacobi separation in orthogonal coordinates with diagonal curvature
,” J. Math. Phys.
55
(8
), 083521
(2014
).14.
K.
Rajaratnam
and R. G.
McLenaghan
, “Killing tensors, warped products and the orthogonal separation of the Hamilton-Jacobi equation
,” J. Math. Phys.
55
(1
), 013505
(2014
).15.
H. P.
Robertson
, “Bermerkung über separierbar systeme in wellenmechanik
,” Math. Ann.
98
, 749
–752
(1927
).16.
C.
Valero
and R. G.
McLenaghan
, “Classification of the orthogonal separable webs on 3-dimensional Minkowski space
,” e-print arXiv:1805.12228 (2018
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.