We discuss classical algorithms for approximating the largest eigenvalue of quantum spin and fermionic Hamiltonians based on semidefinite programming relaxation methods. First, we consider traceless 2-local Hamiltonians H describing a system of n qubits. We give an efficient algorithm that outputs a separable state whose energy is at least λmax/O(log n), where λmax is the maximum eigenvalue of H. We also give a simplified proof of a theorem due to Lieb that establishes the existence of a separable state with energy at least λmax/9. Second, we consider a system of n fermionic modes and traceless Hamiltonians composed of quadratic and quartic fermionic operators. We give an efficient algorithm that outputs a fermionic Gaussian state whose energy is at least λmax/O(n log n). Finally, we show that Gaussian states can vastly outperform Slater determinant states commonly used in the Hartree-Fock method. We give a simple family of Hamiltonians for which Gaussian states and Slater determinants approximate λmax within a fraction 1 − O(n−1) and O(n−1), respectively.

1.
A.
Kitaev
,
A.
Shen
,
M.
Vyalyi
, and
M.
Vyalyi
,
Classical and Quantum Computation
, Graduate Studies in Mathematics (
American Mathematical Society
,
2002
).
2.
J.
Kempe
,
A.
Kitaev
, and
O.
Regev
, in
International Conference on Foundations of Software Technology and Theoretical Computer Science
(
Springer
,
2004
), pp.
372
383
.
3.
T.
Cubitt
and
A.
Montanaro
,
SIAM J. Comput.
45
,
268
(
2016
).
4.
S.
Gharibian
,
Y.
Huang
,
Z.
Landau
,
S. W.
Shin
 et al.,
Found. Trends Theor. Comput. Sci.
10
,
159
(
2015
).
5.
S.
Gharibian
and
J.
Kempe
,
SIAM J. Comput.
41
,
1028
(
2012
).
6.
D.
Aharonov
,
I.
Arad
, and
T.
Vidick
,
ACM SIGACT News
44
,
47
(
2013
).
7.
F. G.
Brandao
and
A. W.
Harrow
, in
Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(
ACM
,
2013
), pp.
871
880
.
8.
L.
Eldar
and
A. W.
Harrow
, preprint arXiv:1510.02082 (
2015
).
9.
C.
Nirkhe
,
U.
Vazirani
, and
H.
Yuen
, preprint arXiv:1802.07419 (
2018
).
10.
M. X.
Goemans
and
D. P.
Williamson
,
J. ACM
42
,
1115
(
1995
).
11.
M.
Charikar
and
A.
Wirth
, in
2004 Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(
IEEE
,
2004
), pp.
54
60
.
12.
A.
Nemirovski
,
Math. Program.
109
,
283
(
2007
).
13.
A. M.-C.
So
, in
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms
(
Society for Industrial and Applied Mathematics
,
2009
), pp.
1201
1209
.
14.
A. M.-C.
So
,
Math. Program.
130
,
125
(
2011
).
15.
S.
Arora
,
E.
Berger
,
H.
Elad
,
G.
Kindler
, and
M.
Safra
, in
46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005)
(
IEEE
,
2005
), pp.
206
215
.
16.

In particular, Ref. 15 shows that if an efficient algorithm achieves this approximation ratio then there exists an algorithm which solves any decision problem in NP on input size n using runtime npoly(log(n)). This is believed to be very unlikely.

17.

Given a function Eq. (1), we can add an auxiliary variable y ∈ {±1} and consider the function of n + 1 variables G(x, y) = xTBx + ybTx which only contains quadratic terms. It is then easily seen that the range of G is equal to the range of F.

18.

We note that all our results apply also to the problem of minimizing the energy of H and approximating the minimum eigenvalue λmin(H) = −λmax(−H) which is more relevant in many-body physics. We opted to consider a maximization problem to avoid a proliferation of minus signs.

19.
A. W.
Harrow
and
A.
Montanaro
,
Quantum
1
,
6
(
2017
).
20.
E. H.
Lieb
,
Commun. Math. Phys.
31
,
327
(
1973
).
21.

The statement of Theorem 2 with H1 = 0 follows from Eq. (1.1) of Ref. 20 by considering spin-1/2 particles and taking the zero temperature limit.

22.

The fact that the product states in Theorems 1 and 2 can be taken to have this special form is a consequence of the fact that the six eigenstates of single-qubit Pauli operators {X, Y, Z} form a 2-design. Any other single-qubit 2-design could alternatively be used in its place, such as, for example, the 4-state one which is used for similar purposes in Ref. 19.

23.
J.
Håstad
, “
Improved bounds for bounded occurrence constraint satisfaction
,” https://www.nada.kth.se/∼johanh/bounded2.pdf (
2015
).
24.
M.
Horodecki
,
P. W.
Shor
, and
M. B.
Ruskai
,
Rev. Math. Phys.
15
,
629
(
2003
).
25.
M. B.
Ruskai
,
Rev. Math. Phys.
15
,
643
(
2003
).
26.
B. M.
Terhal
and
D. P.
DiVincenzo
,
Phys. Rev. A
65
,
032325
(
2002
).
27.
R.
Richardson
,
J. Math. Phys.
6
,
1034
(
1965
).
28.
J.
Dukelsky
,
S.
Pittel
, and
G.
Sierra
,
Rev. Mod. Phys.
76
,
643
(
2004
).
29.

Recall that the sign of h has to be flipped if one is interested in the minimum rather than maximum eigenvalue.

30.
S.
Bravyi
,
Quant. Inf. Comput.
5
,
216
(
2005
).
31.
V.
Bach
,
E. H.
Lieb
, and
J. P.
Solovej
,
J. Stat. Phys.
76
,
3
(
1994
).
32.
D.
Tahara
and
M.
Imada
,
J. Phys. Soc. Jpn.
77
,
114701
(
2008
).
33.
C. V.
Kraus
and
J. I.
Cirac
,
New J. Phys.
12
,
113004
(
2010
).
34.
S.
Bravyi
and
D.
Gosset
,
Commun. Math. Phys.
356
,
451
(
2017
).
35.
36.
37.

Each encoded logical operator Xa, Ya, Za commutes with ba = ic3a2c3a1c3a for each 1 ≤ a ≤ N and {bj, bk} = 2δjk. The Hamiltonian acts on a Hilbert space HAHB, where HA is the N-qubit system with logical operators {Xa, Ya, Za: 1 ≤ aN}, and HB is a system of N Majorana fermions {ba: 1 ≤ aN}. To complete the proof, note that the Hamiltonian acts trivially on HB, which has dimension 2n/2.

You do not currently have access to this content.