The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system defines a system of three Poisson commuting integrals and, correspondingly, three commuting operators, one of which is the Hamiltonian. We show that the Lagrangian fibration defined by the Hamiltonian, the z component of the angular momentum, and a quartic integral obtained from separation in prolate spheroidal coordinates has a non-degenerate focus-focus point, and hence, non-trivial Hamiltonian monodromy for sufficiently large energies. The joint spectrum defined by the corresponding commuting quantum operators has non-trivial quantum monodromy implying that one cannot globally assign quantum numbers to the joint spectrum.

1.
D. M.
Fradkin
,
Am. J. Phys.
33
,
207
(
1965
).
2.
V. I.
Arnold
,
Mathematical Methods of Classical Mechanics
, Graduate Texts in Mathematics (
Springer
,
Berlin, Heidelberg, New York
,
1978
), Vol. 60.
3.
4.
N. N.
Nehorošev
,
Trudy Moskov. Mat. Obšč.
26
,
181
(
1972
).
5.
A. S.
Miščenko
and
A. T.
Fomenko
,
Funct. Anal. Appl.
12
,
113
(
1978
).
6.
P.
Dazord
,
T.
Delzant
 et al,
J. Differ. Geom.
26
,
223
(
1987
).
7.
K.
Schwarzschild
,
Sitz. Ber. Kgl. Preuss. Akad. d. Wiss. Berlin
1916
,
548
.
8.
E. G.
Kalnins
,
J. M.
Kress
, and
W.
Miller
, Jr
,
J. Math. Phys.
47
,
043514
(
2006
).
9.
E. P.
Wigner
,
Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
(
Academic Press
,
New York
,
1959
) [translation by
J. J.
Griffin
of
E. P.
Wigner
, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren (
Vieweg
,
Braunschweig
,
1931
)].
10.
D. J.
Griffiths
,
Introduction to Quantum Mechanics
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2016
).
11.
J. J.
Duistermaat
,
Commun. Pure Appl. Math.
33
,
687
(
1980
).
12.
H. R.
Dullin
and
H.
Waalkens
,
Phys. Rev. Lett.
120
,
020507
(
2018
).
13.
H.
Waalkens
,
H. R.
Dullin
, and
P. H.
Richter
,
Physica D
196
,
265
(
2004
).
14.
N. N.
Nekhoroshev
,
D. A.
Sadovskií
, and
B. I.
Zĥilinskií
,
Ann. Henri Poincaré
7
,
1099
(
2006
).
15.
D.
Sadovskií
and
B.
Zĥilinskií
,
Ann. Phys.
322
,
164
(
2007
).
16.
B.
Zhilinskií
, “
Monodromy and complexity of quantum systems
,” in
The Complexity of Dynamical Systems: A Multi-Disciplinary Perspective
, edited by
J.
Dubbeldam
,
K.
Green
, and
D.
Lenstra
(
John Wiley & Sons
,
2011
), pp.
159
181
.
17.
R. H.
Cushman
and
J. J.
Duistermaat
,
Bull. Am. Math. Soc.
19
,
475
(
1988
).
19.
D. A.
Sadovskií
and
B. I.
Zĥilinskií
,
Phys. Lett. A
256
,
235
(
1999
).
20.
B.
Zhilinskií
, “
Hamiltonian monodromy as lattice defect
,” in
Topology in Condensed Matter
, edited by
M. I.
Monastyrsky
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2006
), pp.
165
186
.
21.
R. H.
Cushman
,
H. R.
Dullin
,
A.
Giacobbe
,
D. D.
Holm
,
M.
Joyeux
,
P.
Lynch
,
D. A.
Sadovskíi
, and
B.
Zĥilinskiíi
,
Phys. Rev. Lett.
93
,
024302
(
2004
).
22.
M. S.
Child
, “
Quantum monodromy and molecular spectroscopy
,” in
Advances in Chemical Physics
, edited by
S. A.
Rice
(
John Wiley & Sons
,
2008
), pp.
39
94
.
23.
E.
Assémat
,
K.
Efstathiou
,
M.
Joyeux
, and
D.
Sugny
,
Phys. Rev. Lett.
104
,
113002
(
2010
).
24.
R. H.
Cushman
and
D. A.
Sadovskií
,
Europhys. Lett.
47
,
1
(
1999
).
25.
K.
Efstathiou
,
D.
Sadovskií
, and
B.
Zĥilinskií
,
Proc. R. Soc. A
463
,
1771
(
2007
).
26.
P.
Cejnar
,
M.
Macek
,
S.
Heinze
,
J.
Jolie
, and
J.
Dobeš
,
J. Phys. A: Math. Gen.
39
,
L515
(
2006
).
27.
M.
Caprio
,
P.
Cejnar
, and
F.
Iachello
,
Ann. Phys.
323
,
1106
(
2008
).
28.
H. R.
Dullin
and
H.
Waalkens
,
Phys. Rev. Lett.
101
,
070405
(
2008
).
29.
N.
Martynchuk
and
H.
Waalkens
,
Regular Chaotic Dyn.
21
,
697
(
2016
).
30.
N.
Martynchuk
,
H.
Dullin
,
K.
Efstathiou
, and
H.
Waalkens
,
Nonlinearity
32
(
4
),
1296
1326
(
2019
).
31.
D.
Sugny
,
A.
Picozzi
,
S.
Lagrange
, and
H. R.
Jauslin
,
Phys. Rev. Lett.
103
,
034102
(
2009
).
32.
C.
Chen
,
M.
Ivory
,
S.
Aubin
, and
J.
Delos
,
Phys. Rev. E
89
,
012919
(
2014
).
33.
N. C.
Leung
and
M.
Symington
,
J. Symplectic Geom.
8
,
143
(
2010
).
34.
M.
Symington
, in
Proceedings of Symposia in Pure Mathematics
(
American Mathematical Society
,
2003
), Vol. 71, p.
51
.
35.
I. N.
Kozin
,
D. A.
Sadovskií
, and
B. I.
Zhilinskií
,
Spectrochim. Acta, Part A
61
,
2867
(
2005
).
36.
V.
Lanchares
,
A. I.
Pascual
,
J.
Palacián
,
P.
Yanguas
, and
J. P.
Salas
,
Chaos
12
,
87
(
2002
).
37.
S.
Ferrer
and
J.
Gárate
, “
On perturbed 3D elliptic oscillators: A case of critical inclination in galactic dynamics
,” in
New Trends for Hamiltonian Systems and Celestial Mechanics
, edited by
E. A.
Lacomba
and
J.
Llibre
(
World Scientific
,
Singapore
,
1996
), pp.
179
197
.
38.
J.
Moser
,
Commun. Pure Appl. Math.
23
,
609
(
1970
).
39.
K.
Efstathiou
and
D. A.
Sadovskií
,
Nonlinearity
17
,
415
(
2004
).
40.
C. A.
Coulson
and
A.
Joseph
,
Proc. Phys. Soc.
90
,
887
(
1967
).
41.
R. H.
Cushman
and
L. M.
Bates
,
Global Aspects of Classical Integrable Systems
(
Birkhäuser
,
Basel, Boston, Berlin
,
1997
).
42.
R. H.
Cushman
,
S.
Ferrer
, and
H.
Hanßmann
,
Nonlinearity
12
,
389
(
1999
).
43.
S.
Ferrer
,
J.
Palacián
, and
P.
Yanguas
,
J. Nonlinear Sci.
10
,
145
(
2000
).
44.
L.
Michel
and
B. I.
Zhilinskií
,
Phys. Rep.
341
,
173
(
2001
).
45.
R. H.
Cushman
and
D. A.
Sadovskií
,
Physica D
142
,
166
(
2000
).
46.
K.
Efstathiou
, in
Metamorphoses of Hamiltonian Systems with Symmetries
, Lecture Notes in Mathematics, edited by
J.-M.
Morel
,
F.
Takens
, and
B.
Teissier
(
Springer
,
Berlin, Heidelberg, New York
,
2005
) p.
149
.
47.
K.
Efstathiou
and
D. A.
Sadovskií
,
Rev. Mod. Phys.
82
,
2099
(
2010
).
48.
J. J.
Duistermaat
and
G. J.
Heckman
,
Inventiones Math.
69
,
259
(
1982
).
49.
50.
L.
Grondin
,
D. A.
Sadovskií
, and
B. I.
Zhilinskií
,
Phys. Rev. A
65
,
012105
(
2001
).
51.
A.
Giacobbe
,
R. H.
Cushman
,
D. A.
Sadovskií
, and
B. I.
Zhilinskií
,
J. Math. Phys.
45
,
5076
(
2004
).
52.
T.
Delzant
,
Bull. Soc. Math. France
116
,
315
(
1988
).
53.
54.
DLMF, “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release 1.0.19 of 2018-06-22 (
2018
),
F. W. J.
Olver
,
A. B.
Olde Daalhuis
,
D. W.
Lozier
,
B. I.
Schneider
,
R. F.
Boisvert
,
C. W.
Clark
,
B. R.
Miller
, and
B. V.
Saunders
.
55.
D. A.
Sadovskií
and
B. I.
Zhilinskií
,
Phys. Lett. A
256
,
235
(
1999
).
56.
A.
Pelayo
and
S.
Vũ Ngọc
,
Inventiones Math.
177
,
571
(
2009
).
57.
K.
Efstathiou
and
N.
Martynchuk
,
J. Geom. Phys.
115
,
104
(
2017
), FDIS 2015: Finite Dimensional Integrable Systems in Geometry and Mathematical Physics.
You do not currently have access to this content.