We study the spectral properties of curl, a linear differential operator of first order acting on differential forms of appropriate degree on an odd-dimensional closed oriented Riemannian manifold. In three dimensions, its eigenvalues are the electromagnetic oscillation frequencies in vacuum without external sources. In general, the spectrum consists of the eigenvalue 0 with infinite multiplicity and further real discrete eigenvalues of finite multiplicity. We compute the Weyl asymptotics and study the ζ-function. We give a sharp lower eigenvalue bound for positively curved manifolds and analyze the equality case. Finally, we compute the spectrum for flat tori, round spheres, and 3-dimensional spherical space forms.
REFERENCES
1.
Atiyah
, M. F.
, Patodi
, V. K.
, and Singer
, I. M.
, “Spectral asymmetry and Riemannian geometry. I
,” Math. Proc. Cambridge Philos. Soc.
77
, 43
–69
(1975
).2.
Bär
, C.
, “The Dirac operator on space forms of positive curvature
,” J. Math. Soc. Jpn.
48
(1
), 69
–83
(1996
).3.
Berger
, M.
, Gauduchon
, P.
, and Mazet
, E.
, “Le spectre d’une variété Riemannienne
,” in Lecture Notes in Mathematics
(Springer-Verlag
, Berlin, Heidelberg, New York
, 1971
), Vol. 194.4.
Berline
, N.
, Getzler
, E.
, and Vergne
, M.
, Heat Kernels and Dirac Operators
, Grundlehren der Mathematischen Wissenschaften (Springer-Verlag
, Berlin
, 1992
), Vol. 298.5.
Besse
, A. L.
, Einstein Manifolds
, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (Springer-Verlag
, Berlin
, 1987
), Vol. 10.6.
Birman
, M. S.
and Solomyak
, M. Z.
, “The Weyl asymptotics of the spectrum of the Maxwell operator for domains with a Lipschitz boundary
,” Vestn. Leningr. Univ., Math.
20
(3
), 15
–21
(1987
).7.
Chavel
, I.
, Eigenvalues in Riemannian Geometry
, Pure and Applied Mathematics (Academic Press, Inc.
, Orlando, FL
, 1984
), Vol. 115.8.
Cheeger
, J.
and Tian
, G.
, “On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay
,” Invent. Math.
118
(3
), 493
–571
(1994
).9.
Demchenko
, M. N.
and Filonov
, N. D.
, “Spectral asymptotics of the Maxwell operator on Lipschitz manifolds with boundary
,” in Spectral Theory of Differential Operators
(Amer. Math. Soc., Providence, RI
, 2008
), pp. 73
–90
.10.
Filonov
, N.
, “Weyl asymptotics of the spectrum of the Maxwell operator in Lipschitz domains of arbitrary dimension
,” Algebra i Anal.
25
(1
), 170
–215
(2013
).11.
Gallot
, S.
and Meyer
, D.
, “Opérateur de courbure et Laplacien des formes différentielles d’une variété Riemannienne
,” J. Math. Pures Appl.
54
(9
), 259
–284
(1975
).12.
Ikeda
, A.
, “On the spectrum of a Riemannian manifold of positive constant curvature
,” Osaka J. Math.
17
(1
), 75
–93
(1980
).13.
Ivrii
, V. Y.
, “Accurate spectral asymptotics for elliptic operators that act in vector bundles
,” Funct. Anal. Appl.
16
(2
), 101
–108
(1982
).14.
Iwasaki
, I.
and Katase
, K.
, “On the spectra of Laplace operator on Λ*(Sn)
,” Proc. Jpn. Acad., Ser. A
55
, 141
–145
(1979
).15.
Jakobson
, D.
and Strohmaier
, A.
, “High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows
,” Commun. Math. Phys.
270
(3
), 813
–833
(2007
).16.
Kervaire
, M.
, “Courbure intégrale généralisée et homotopie
,” Math. Ann.
131
, 219
–252
(1956
).17.
Millson
, J. J.
, “Chern-Simons invariants of constant curvature manifolds
,” Ph.D. thesis, University of California
, Berkeley
, 1973
.18.
Peng
, L.
and Yang
, L.
, “The curl in seven dimensional space and its applications
,” Approx. Theory Appl.
15
(3
), 66
–80
(1999
).19.
Rosenberg
, S.
, The Laplacian on a Riemannian Manifold
, London Mathematical Society Student Texts (Cambridge University Press
, Cambridge
, 1997
), Vol. 31.20.
Safarov
, Y. G.
, “Asymptotic behavior of the spectrum of the Maxwell operator
,” J. Sov. Math.
27
, 2655
–2661
(1984
).21.
Veniaminov
, N. A.
, “Estimate for the remainder in the Weyl asymptotics of the spectrum of the Maxwell operator in Lipschitz domains
,” J. Math. Sci.
169
(1
), 46
–63
(2010
).22.
Warner
, F. W.
, “Foundations of differentiable manifolds and Lie groups
,” in Graduate Texts in Mathematics
(Springer-Verlag
, New York, Berlin
, 1983
), Vol. 94.23.
Weck
, N.
, “Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries
,” J. Math. Anal. Appl.
46
, 410
–437
(1974
).24.
Weyl
, H.
, “Über das Spektrum der Hohlraumstrahlung
,” J. Reine Angew. Math.
141
, 163
–181
(1912
).25.
Weyl
, H.
, “Die natürlichen Randwertaufgaben im Außenraum für Strahlungsfelder beliebiger Dimension und beliebigen Ranges
,” Math. Z.
56
, 105
–119
(1952
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.