We study the spectral properties of curl, a linear differential operator of first order acting on differential forms of appropriate degree on an odd-dimensional closed oriented Riemannian manifold. In three dimensions, its eigenvalues are the electromagnetic oscillation frequencies in vacuum without external sources. In general, the spectrum consists of the eigenvalue 0 with infinite multiplicity and further real discrete eigenvalues of finite multiplicity. We compute the Weyl asymptotics and study the ζ-function. We give a sharp lower eigenvalue bound for positively curved manifolds and analyze the equality case. Finally, we compute the spectrum for flat tori, round spheres, and 3-dimensional spherical space forms.

1.
Atiyah
,
M. F.
,
Patodi
,
V. K.
, and
Singer
,
I. M.
, “
Spectral asymmetry and Riemannian geometry. I
,”
Math. Proc. Cambridge Philos. Soc.
77
,
43
69
(
1975
).
2.
Bär
,
C.
, “
The Dirac operator on space forms of positive curvature
,”
J. Math. Soc. Jpn.
48
(
1
),
69
83
(
1996
).
3.
Berger
,
M.
,
Gauduchon
,
P.
, and
Mazet
,
E.
, “
Le spectre d’une variété Riemannienne
,” in
Lecture Notes in Mathematics
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1971
), Vol. 194.
4.
Berline
,
N.
,
Getzler
,
E.
, and
Vergne
,
M.
,
Heat Kernels and Dirac Operators
, Grundlehren der Mathematischen Wissenschaften (
Springer-Verlag
,
Berlin
,
1992
), Vol. 298.
5.
Besse
,
A. L.
,
Einstein Manifolds
, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (
Springer-Verlag
,
Berlin
,
1987
), Vol. 10.
6.
Birman
,
M. S.
and
Solomyak
,
M. Z.
, “
The Weyl asymptotics of the spectrum of the Maxwell operator for domains with a Lipschitz boundary
,”
Vestn. Leningr. Univ., Math.
20
(
3
),
15
21
(
1987
).
7.
Chavel
,
I.
,
Eigenvalues in Riemannian Geometry
, Pure and Applied Mathematics (
Academic Press, Inc.
,
Orlando, FL
,
1984
), Vol. 115.
8.
Cheeger
,
J.
and
Tian
,
G.
, “
On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay
,”
Invent. Math.
118
(
3
),
493
571
(
1994
).
9.
Demchenko
,
M. N.
and
Filonov
,
N. D.
, “
Spectral asymptotics of the Maxwell operator on Lipschitz manifolds with boundary
,” in
Spectral Theory of Differential Operators
(
Amer. Math. Soc., Providence, RI
,
2008
), pp.
73
90
.
10.
Filonov
,
N.
, “
Weyl asymptotics of the spectrum of the Maxwell operator in Lipschitz domains of arbitrary dimension
,”
Algebra i Anal.
25
(
1
),
170
215
(
2013
).
11.
Gallot
,
S.
and
Meyer
,
D.
, “
Opérateur de courbure et Laplacien des formes différentielles d’une variété Riemannienne
,”
J. Math. Pures Appl.
54
(
9
),
259
284
(
1975
).
12.
Ikeda
,
A.
, “
On the spectrum of a Riemannian manifold of positive constant curvature
,”
Osaka J. Math.
17
(
1
),
75
93
(
1980
).
13.
Ivrii
,
V. Y.
, “
Accurate spectral asymptotics for elliptic operators that act in vector bundles
,”
Funct. Anal. Appl.
16
(
2
),
101
108
(
1982
).
14.
Iwasaki
,
I.
and
Katase
,
K.
, “
On the spectra of Laplace operator on Λ*(Sn)
,”
Proc. Jpn. Acad., Ser. A
55
,
141
145
(
1979
).
15.
Jakobson
,
D.
and
Strohmaier
,
A.
, “
High energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows
,”
Commun. Math. Phys.
270
(
3
),
813
833
(
2007
).
16.
Kervaire
,
M.
, “
Courbure intégrale généralisée et homotopie
,”
Math. Ann.
131
,
219
252
(
1956
).
17.
Millson
,
J. J.
, “
Chern-Simons invariants of constant curvature manifolds
,” Ph.D. thesis,
University of California
,
Berkeley
,
1973
.
18.
Peng
,
L.
and
Yang
,
L.
, “
The curl in seven dimensional space and its applications
,”
Approx. Theory Appl.
15
(
3
),
66
80
(
1999
).
19.
Rosenberg
,
S.
,
The Laplacian on a Riemannian Manifold
, London Mathematical Society Student Texts (
Cambridge University Press
,
Cambridge
,
1997
), Vol. 31.
20.
Safarov
,
Y. G.
, “
Asymptotic behavior of the spectrum of the Maxwell operator
,”
J. Sov. Math.
27
,
2655
2661
(
1984
).
21.
Veniaminov
,
N. A.
, “
Estimate for the remainder in the Weyl asymptotics of the spectrum of the Maxwell operator in Lipschitz domains
,”
J. Math. Sci.
169
(
1
),
46
63
(
2010
).
22.
Warner
,
F. W.
, “
Foundations of differentiable manifolds and Lie groups
,” in
Graduate Texts in Mathematics
(
Springer-Verlag
,
New York, Berlin
,
1983
), Vol. 94.
23.
Weck
,
N.
, “
Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries
,”
J. Math. Anal. Appl.
46
,
410
437
(
1974
).
24.
Weyl
,
H.
, “
Über das Spektrum der Hohlraumstrahlung
,”
J. Reine Angew. Math.
141
,
163
181
(
1912
).
25.
Weyl
,
H.
, “
Die natürlichen Randwertaufgaben im Außenraum für Strahlungsfelder beliebiger Dimension und beliebigen Ranges
,”
Math. Z.
56
,
105
119
(
1952
).
You do not currently have access to this content.