We derive universal codes for simultaneous transmission of classical messages and entanglement through quantum channels, possibly under the attack of a malignant third party. These codes are robust to different kinds of channel uncertainties. To construct such universal codes, we invoke and generalize the properties of random codes for classical and quantum message transmission through quantum channels. We show these codes to be optimal by giving a multi-letter characterization of regions corresponding to capacity of compound quantum channels for simultaneously transmitting and generating entanglement with classical messages. In addition, we give dichotomy statements in which we characterize the capacity of arbitrarily varying quantum channels for simultaneous transmission of classical messages and entanglement. These include cases where the malignant jammer present in the arbitrarily varying channel model is classical (chooses channel states of the product form) and fully quantum (is capable of general attacks not necessarily of the product form).

1.
R.
Ahlswede
, “
Elimination of correlation in random codes for arbitrarily varying channels
,”
Z. Wahrscheinlichkeitstheorie Verw. Geb.
44
,
159
175
(
1978
).
2.
R.
Ahlswede
and
A.
Winter
, “
Strong converse for identification via quantum channels
,”
IEEE Trans. Inf. Theory
48
,
569
579
(
2002
).
3.
R.
Ahlswede
,
I.
Bjelakovic
,
H.
Boche
, and
J.
Nötzel
, “
Quantum capacity under adversarial noise: Arbitrarily varying quantum channels
,”
Commun. Math. Phys.
317
,
103
156
(
2013
).
4.
C. H.
Bennett
,
P. W.
Shor
,
J. A.
Smolin
, and
A. V.
Thapliyal
, “
Entanglement-assisted classical capacity of noisy quantum channels
,”
Phys. Rev. Lett.
83
,
3081
3084
(
1999
).
5.
M.
Berta
,
H.
Gharibyan
, and
M.
Walter
, “
Entanglement-assisted capacities of compound quantum channels
,”
IEEE Trans. Inf. Theory
63
,
3306
3321
(
2017
).
6.
I.
Bjelakovic
,
H.
Boche
, and
J.
Nötzel
, “
Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding
,”
Commun. Math. Phys.
292
,
55
97
(
2009
).
7.
I.
Bjelakovic
,
H.
Boche
, and
J.
Nötzel
, “
Quantum capacity of a class of compound channels
,”
Phys. Rev. A
78
(
4
),
042331
(
2008
).
8.
H.
Boche
and
J.
Nötzel
, “
Positivity, discontinuity, finite resources, and nonzero error for arbitrarily varying quantum channels
,”
J. Math. Phys.
55
,
122201
(
2014
).
9.
H.
Boche
,
C.
Deppe
,
J.
Nötzel
, and
A.
Winter
, “
Fully quantum arbitrarily varying channels: Random coding capacity and capacity dichotomy
,” in
Proceedings of IEEE ISIT’18
(
IEEE
,
2018
).
10.
H.
Boche
,
G.
Janßen
, and
S.
Kaltenstadler
, “
Entanglement-assisted classical capacities of compound and arbitrarily varying channels
,”
Quantum Inf. Process.
16
,
88
(
2017
).
11.
H.
Boche
,
G.
Janßen
, and
S.
Saeedinaeeni
, “
Universal random codes: Capacity regions of the compound quantum multiple-access channel with one classical and one quantum sender
,” e-print arXiv:1801.03692 (
2018
).
12.
N.
Cai
,
A.
Winter
, and
R. W.
Yeung
, “
Quantum privacy and quantum wiretap channels
,”
Probl. Inf. Transm.
40
(
4
),
318
336
(
2004
).
13.
M.
Christandl
,
R.
König
, and
R.
Renner
, “
Post-selection technique for quantum channels with applications to quantum cryptography
,”
Phys. Rev. Lett.
102
,
020504
(
2009
).
14.
I.
Devetak
, “
The private classical capacity and quantum capacity of a quantum channel
,”
IEEE Trans. Inf. Theory
51
(
1
),
44
55
(
2005
).
15.
I.
Devetak
and
P. W.
Shor
, “
The capacity of quantum channels for simultaneous transmission of classical and quantum information
,”
Commun. Math. Phys.
256
(
2
),
287
303
(
2005
).
16.
T.
Ericson
, “
Exponential error bounds for random codes in arbitrarily varying channel
,”
IEEE Trans. Inf. Theory
31
(
1
),
42
48
(
1985
).
17.
A. S.
Holevo
, “
The capacity of the quantum channel with general signal states
,”
IEEE Trans. Inf. Theory
44
,
269
273
(
1998
).
18.
M. H.
Hsieh
and
M. M.
Wilde
, “
Entanglement-assisted communication of classical and quantum information
,”
IEEE Trans. Inf. Theory
56
(
9
),
4682
4704
(
2010
).
19.
M. H.
Hsieh
and
M.
Wilde
, “
Trading classical communication, quantum communication and entanglement in quantum Shannon theory
,”
IEEE Trans. Inf. Theory
56
(
9
),
4705
4730
(
2010
).
20.
M. H.
Hsieh
and
M.
Wilde
, “
The quantum dynamic capacity formula of a quantum channel
,”
Quantum Inf. Process.
11
,
1431
1461
(
2011
).
21.
S.
Karumanchi
,
S.
Mancini
,
A.
Winter
, and
D.
Yang
, “
Quantum channel capacities with passive environment assistance
,”
IEEE Trans. Inf. Theory
62
,
1733
1747
(
2016
).
22.
R.
Klesse
, “
Approximate quantum error correction, random codes and quantum channel capacity
,”
Phys. Rev. A
75
,
062315
(
2007
).
23.
M.
Mosonyi
, “
Coding theorems for compound problems via quantum Rényi divergences
,”
IEEE Trans. Inf. Theory
61
,
2997
3012
(
2015
).
24.
A.
Roy
and
A. J.
Scott
, “
Unitary designs and codes
,”
Des., Codes Cryptography
53
(
1
),
13
31
(
2009
).
25.
R. F.
Schaefer
and
H.
Boche
, “
Physical layer service integration in wireless networks
,”
IEEE Signal Process. Mag.
31
(
3
),
147
156
(
2014
).
26.
B.
Schumacher
and
M.
D Westmoreland
, “
Sending classical information via noisy quantum channels
,”
Phys. Rev. A
56
(
1
),
131
138
(
1997
).
27.
M.
Wilde
,
Quantum Information Theory
, 2nd ed. (
Cambridge University Press
,
2017
).
28.
J.
Yard
,
I.
Devetak
, and
P.
Hayden
, “
Capacity theorems for quantum multiple-access channels: Classical-quantum and quantum-quantum capacity regions
,”
IEEE Trans. Inf. Theory
54
,
3091
3113
(
2008
).
29.
A. Yu.
Kitaev
,
A. H.
Shen
, and
M. N.
Vyalyi
,
Classical and Quantum Computation
, Graduate Studies in Mathematics Vol. 47 (
American Mathematical Society
,
Providence, Rhode Island
,
2002
).
You do not currently have access to this content.