In this note, we show that the projection of the Biot–Savart operator over the space of divergence-free vector fields that are tangential to the boundary is the solution of a suitable saddle-point variational problem. Since this projected Biot–Savart operator is shown to be compact, its spectrum can be completely characterized. In particular, through a suitable finite element discretization, it becomes possible to compute the helicity of a bounded domain of a general topological shape, via the determination of the eigenvalue of the projected Biot–Savart operator that has a maximum absolute value.
REFERENCES
1.
V.
Girault
and P.-A.
Raviart
, Finite Element Methods for Navier-Stokes Equations
(Springer-Verlag
, Berlin
, 1986
).2.
J.
Cantarella
, D.
DeTurck
, and H.
Gluck
, “Vector calculus and the topology of domains in 3-space
,” Am. Math. Monthly
109
, 409
–442
(2002
).3.
R.
Benedetti
, R.
Frigerio
, and R.
Ghiloni
, “The topology of Helmholtz domains
,” Expo. Math.
30
, 319
–375
(2012
).4.
A.
Alonso Rodríguez
, J.
Camaño
, R.
Rodríguez
, A.
Valli
, and P.
Venegas
, “Finite element approximation of the spectrum of the curl operator in a multiply connected domain
,” Found. Comput. Math.
18
, 1493
–1533
(2018
).5.
W.
McLean
, Strongly Elliptic Systems and Boundary Integral Equations
(Cambridge University Press
, Cambridge
, 2000
).6.
J.
Cantarella
, D.
DeTurck
, and H.
Gluck
, “The Biot–Savart operator for application to knot theory, fluid dynamics, and plasma physics
,” J. Math. Phys.
42
, 876
–905
(2001
).7.
A.
Buffa
, “Hodge decompositions on the boundary of nonsmooth domains: The multi-connected case
,” Math. Models Methods Appl. Sci.
11
, 1491
–1503
(2001
).8.
R.
Hiptmair
, P. R.
Kotiuga
, and S.
Tordeux
, “Self-adjoint curl operators
,” Ann. Mat. Pura Appl.
191
(4
), 431
–457
(2012
).9.
D.
Boffi
, F.
Brezzi
, and M.
Fortin
, Mixed Finite Element Methods and Applications
(Springer
, Heidelberg
, 2013
).10.
L.
Woltjer
, “A theorem on force-free magnetic fields
,” Proc. Nat. Acad. Sci. U. S. A.
44
, 489
–491
(1958
).11.
H. K.
Moffatt
, “The degree of knottedness of tangled vortex lines
,” J. Fluid Mech.
35
, 117
–129
(1969
).12.
H. K.
Moffatt
, “Helicity and celestial magnetism
,” Proc. A.
472
, 17
(2016
).13.
J.
Cantarella
, D.
DeTurck
, H.
Gluck
, and M.
Teytel
, “Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
,” J. Math. Phys.
41
, 5615
–5641
(2000
).14.
J.
Cantarella
, D.
DeTurck
, H.
Gluck
, and M.
Teytel
, “The spectrum of the curl operator on spherically symmetric domains
,” Phys. Plasmas
7
, 2766
–2775
(2000
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.