In this note, we show that the projection of the Biot–Savart operator over the space of divergence-free vector fields that are tangential to the boundary is the solution of a suitable saddle-point variational problem. Since this projected Biot–Savart operator is shown to be compact, its spectrum can be completely characterized. In particular, through a suitable finite element discretization, it becomes possible to compute the helicity of a bounded domain of a general topological shape, via the determination of the eigenvalue of the projected Biot–Savart operator that has a maximum absolute value.

1.
V.
Girault
and
P.-A.
Raviart
,
Finite Element Methods for Navier-Stokes Equations
(
Springer-Verlag
,
Berlin
,
1986
).
2.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
, “
Vector calculus and the topology of domains in 3-space
,”
Am. Math. Monthly
109
,
409
442
(
2002
).
3.
R.
Benedetti
,
R.
Frigerio
, and
R.
Ghiloni
, “
The topology of Helmholtz domains
,”
Expo. Math.
30
,
319
375
(
2012
).
4.
A.
Alonso Rodríguez
,
J.
Camaño
,
R.
Rodríguez
,
A.
Valli
, and
P.
Venegas
, “
Finite element approximation of the spectrum of the curl operator in a multiply connected domain
,”
Found. Comput. Math.
18
,
1493
1533
(
2018
).
5.
W.
McLean
,
Strongly Elliptic Systems and Boundary Integral Equations
(
Cambridge University Press
,
Cambridge
,
2000
).
6.
J.
Cantarella
,
D.
DeTurck
, and
H.
Gluck
, “
The Biot–Savart operator for application to knot theory, fluid dynamics, and plasma physics
,”
J. Math. Phys.
42
,
876
905
(
2001
).
7.
A.
Buffa
, “
Hodge decompositions on the boundary of nonsmooth domains: The multi-connected case
,”
Math. Models Methods Appl. Sci.
11
,
1491
1503
(
2001
).
8.
R.
Hiptmair
,
P. R.
Kotiuga
, and
S.
Tordeux
, “
Self-adjoint curl operators
,”
Ann. Mat. Pura Appl.
191
(
4
),
431
457
(
2012
).
9.
D.
Boffi
,
F.
Brezzi
, and
M.
Fortin
,
Mixed Finite Element Methods and Applications
(
Springer
,
Heidelberg
,
2013
).
10.
L.
Woltjer
, “
A theorem on force-free magnetic fields
,”
Proc. Nat. Acad. Sci. U. S. A.
44
,
489
491
(
1958
).
11.
H. K.
Moffatt
, “
The degree of knottedness of tangled vortex lines
,”
J. Fluid Mech.
35
,
117
129
(
1969
).
12.
H. K.
Moffatt
, “
Helicity and celestial magnetism
,”
Proc. A.
472
,
17
(
2016
).
13.
J.
Cantarella
,
D.
DeTurck
,
H.
Gluck
, and
M.
Teytel
, “
Isoperimetric problems for the helicity of vector fields and the Biot-Savart and curl operators
,”
J. Math. Phys.
41
,
5615
5641
(
2000
).
14.
J.
Cantarella
,
D.
DeTurck
,
H.
Gluck
, and
M.
Teytel
, “
The spectrum of the curl operator on spherically symmetric domains
,”
Phys. Plasmas
7
,
2766
2775
(
2000
).
You do not currently have access to this content.