In this paper, we return to the subject of Jacobi metrics for timelike and null geodesics in stationary spacetimes, correcting some previous misconceptions. We show that not only null geodesics but also timelike geodesics are governed by a Jacobi-Maupertuis type variational principle and a Randers-Finsler metric for which we give explicit formulas. The cases of the Taub-NUT and Kerr spacetimes are discussed in detail. Finally, we show how our Jacobi-Maupertuis Randers-Finsler metric may be expressed in terms of the effective medium describing the behavior of Maxwell’s equations in the curved spacetime. In particular, we see in very concrete terms how the gravitational electric permittivity, magnetic permeability, and magnetoelectric susceptibility enter the Jacobi-Maupertuis Randers-Finsler function.

1.
G. W.
Gibbons
, “
The Jacobi-metric for timelike geodesics in static spacetimes
,”
Class Quantum Gravity
33
,
025004
(
2016
).
2.
T.
Levi-Civita
, “
Statica einsteiniana
,”
Rend. R. Accad. Linc.
26
,
458
470
(
1917
).
3.
H.
Weyl
, “
Zur gravitationstheorie
,”
Ann. Phys.
359
,
117
145
(
1917
).
4.
M. A.
Abramowicz
,
B.
Carter
, and
J.-P.
Lasota
, “
Optical reference geometry for stationary and static dynamics
,”
Gen. Rel. Gravity
20
,
1173
1183
(
1988
).
5.
J. L.
Synge
, “
An alternative treatment of Fermat’s principle for a stationary gravitational field
,”
Philos. Mag.
50
,
913
916
(
1925
).
6.
T.
Levi-Civita
,
The Absolute Differential Calculus
(
Blackie
,
London
,
1927
).
7.
V.
Perlick
, “
On Fermat’s principle in general relativity. II. The conformally stationary case
,”
Classical Quantum Gravity
7
,
1849
(
1990
).
8.
G. W.
Gibbons
,
C. A. R.
Herdeiro
,
C. M.
Warnick
, and
M. C.
Werner
, “
Stationary metrics and optical Zermelo-Randers-Finsler geometry
,”
Phys. Rev. D
79
,
044022
(
2009
).
9.
E.
Caponio
,
A. M.
Javaloyes
, and
A.
Masiello
, “
On the energy functional on Finsler manifolds and applications to stationary spacetimes
,”
Math. Ann.
351
,
365
(
2011
).
10.
G.
Randers
, “
On an asymmetrical metric in the four-space of general relativity
,”
Phys. Rev.
59
,
195
(
1941
).
11.
G. W.
Gibbons
and
P.
Maraner
, “
The Jacobi metric for timelike geodesics in static spacetimes
,”
Classical Quantum Gravity
33
,
025004
(
2019
); “
Comment on `The Jacobi metric for timelike geodesics in static spacetimes'
” (unpublished).
12.
S.
Chanda
,
G. W.
Gibbons
, and
P.
Guha
, “
Jacobi-Maupertuis-Eisenhart metric and geodesic flows
,”
J. Math. Phys.
58
,
032503
(
2017
).
13.
V. P.
Frolov
and
A. A.
Shoom
, “
Spinoptics in a stationary spacetime
,”
Phys. Rev. D
84
,
044026
(
2011
).
14.
G. F.
Torres del Castillo
and
J.
Mercado-Pérez
, “
Three-dimensional formulation of the Maxwell equations for stationary spacetimes
,”
J. Math. Phys.
40
,
2882
2890
(
1999
).
15.
G. W.
Gibbons
and
M. C.
Werner
, “
The gravitational magnetoelectric effect
,”
Universe
5
,
88
(
2019
).
16.
V.
Perlick
, “
The brachistochrone problem in a stationary space-time
,”
J. Math. Phys.
32
,
3148
(
1991
).
17.
S.
Chanda
and
P.
Guha
, “
Geometrical formulation of relativistic mechanics
,”
Int. J. Geom. Methods Mod. Phys.
15
,
1850062
(
2018
).
18.
D.
Bao
,
S.-S.
Chern
, and
Z.
Shen
,
An Introduction to Riemann-Finsler Geometry
(
Springer
,
New York
,
2000
).
19.
M. C.
Werner
, “
Gravitational lensing in the Kerr-Randers optical geometry
,”
Gen. Rel. Gravity
44
,
3047
3057
(
2012
).
20.

The relation of the spatial electromagnetic fields E, B, H, and D to the components of the Maxwell tensor Fμν is spelled out in detail in Sec. 2.3 of Ref. 15, where quantities in the unit weight formalism are denoted by tildes, however.

You do not currently have access to this content.